--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/FOL/ex/Classical.thy Thu Oct 16 10:31:40 2003 +0200
@@ -0,0 +1,523 @@
+(* Title: FOL/ex/Classical
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1994 University of Cambridge
+*)
+
+header{*Classical Predicate Calculus Problems*}
+
+theory Classical = FOL:
+
+lemma "(P --> Q | R) --> (P-->Q) | (P-->R)"
+by blast
+
+text{*If and only if*}
+
+lemma "(P<->Q) <-> (Q<->P)"
+by blast
+
+lemma "~ (P <-> ~P)"
+by blast
+
+
+text{*Sample problems from
+ F. J. Pelletier,
+ Seventy-Five Problems for Testing Automatic Theorem Provers,
+ J. Automated Reasoning 2 (1986), 191-216.
+ Errata, JAR 4 (1988), 236-236.
+
+The hardest problems -- judging by experience with several theorem provers,
+including matrix ones -- are 34 and 43.
+*}
+
+subsection{*Pelletier's examples*}
+
+text{*1*}
+lemma "(P-->Q) <-> (~Q --> ~P)"
+by blast
+
+text{*2*}
+lemma "~ ~ P <-> P"
+by blast
+
+text{*3*}
+lemma "~(P-->Q) --> (Q-->P)"
+by blast
+
+text{*4*}
+lemma "(~P-->Q) <-> (~Q --> P)"
+by blast
+
+text{*5*}
+lemma "((P|Q)-->(P|R)) --> (P|(Q-->R))"
+by blast
+
+text{*6*}
+lemma "P | ~ P"
+by blast
+
+text{*7*}
+lemma "P | ~ ~ ~ P"
+by blast
+
+text{*8. Peirce's law*}
+lemma "((P-->Q) --> P) --> P"
+by blast
+
+text{*9*}
+lemma "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"
+by blast
+
+text{*10*}
+lemma "(Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P<->Q)"
+by blast
+
+text{*11. Proved in each direction (incorrectly, says Pelletier!!) *}
+lemma "P<->P"
+by blast
+
+text{*12. "Dijkstra's law"*}
+lemma "((P <-> Q) <-> R) <-> (P <-> (Q <-> R))"
+by blast
+
+text{*13. Distributive law*}
+lemma "P | (Q & R) <-> (P | Q) & (P | R)"
+by blast
+
+text{*14*}
+lemma "(P <-> Q) <-> ((Q | ~P) & (~Q|P))"
+by blast
+
+text{*15*}
+lemma "(P --> Q) <-> (~P | Q)"
+by blast
+
+text{*16*}
+lemma "(P-->Q) | (Q-->P)"
+by blast
+
+text{*17*}
+lemma "((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S))"
+by blast
+
+subsection{*Classical Logic: examples with quantifiers*}
+
+lemma "(\<forall>x. P(x) & Q(x)) <-> (\<forall>x. P(x)) & (\<forall>x. Q(x))"
+by blast
+
+lemma "(\<exists>x. P-->Q(x)) <-> (P --> (\<exists>x. Q(x)))"
+by blast
+
+lemma "(\<exists>x. P(x)-->Q) <-> (\<forall>x. P(x)) --> Q"
+by blast
+
+lemma "(\<forall>x. P(x)) | Q <-> (\<forall>x. P(x) | Q)"
+by blast
+
+text{*Discussed in Avron, Gentzen-Type Systems, Resolution and Tableaux,
+ JAR 10 (265-281), 1993. Proof is trivial!*}
+lemma "~((\<exists>x.~P(x)) & ((\<exists>x. P(x)) | (\<exists>x. P(x) & Q(x))) & ~ (\<exists>x. P(x)))"
+by blast
+
+subsection{*Problems requiring quantifier duplication*}
+
+text{*Theorem B of Peter Andrews, Theorem Proving via General Matings,
+ JACM 28 (1981).*}
+lemma "(\<exists>x. \<forall>y. P(x) <-> P(y)) --> ((\<exists>x. P(x)) <-> (\<forall>y. P(y)))"
+by blast
+
+text{*Needs multiple instantiation of ALL.*}
+lemma "(\<forall>x. P(x)-->P(f(x))) & P(d)-->P(f(f(f(d))))"
+by blast
+
+text{*Needs double instantiation of the quantifier*}
+lemma "\<exists>x. P(x) --> P(a) & P(b)"
+by blast
+
+lemma "\<exists>z. P(z) --> (\<forall>x. P(x))"
+by blast
+
+lemma "\<exists>x. (\<exists>y. P(y)) --> P(x)"
+by blast
+
+text{*V. Lifschitz, What Is the Inverse Method?, JAR 5 (1989), 1--23. NOT PROVED*}
+lemma "\<exists>x x'. \<forall>y. \<exists>z z'.
+ (~P(y,y) | P(x,x) | ~S(z,x)) &
+ (S(x,y) | ~S(y,z) | Q(z',z')) &
+ (Q(x',y) | ~Q(y,z') | S(x',x'))"
+oops
+
+
+
+subsection{*Hard examples with quantifiers*}
+
+text{*18*}
+lemma "\<exists>y. \<forall>x. P(y)-->P(x)"
+by blast
+
+text{*19*}
+lemma "\<exists>x. \<forall>y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))"
+by blast
+
+text{*20*}
+lemma "(\<forall>x y. \<exists>z. \<forall>w. (P(x)&Q(y)-->R(z)&S(w)))
+ --> (\<exists>x y. P(x) & Q(y)) --> (\<exists>z. R(z))"
+by blast
+
+text{*21*}
+lemma "(\<exists>x. P-->Q(x)) & (\<exists>x. Q(x)-->P) --> (\<exists>x. P<->Q(x))"
+by blast
+
+text{*22*}
+lemma "(\<forall>x. P <-> Q(x)) --> (P <-> (\<forall>x. Q(x)))"
+by blast
+
+text{*23*}
+lemma "(\<forall>x. P | Q(x)) <-> (P | (\<forall>x. Q(x)))"
+by blast
+
+text{*24*}
+lemma "~(\<exists>x. S(x)&Q(x)) & (\<forall>x. P(x) --> Q(x)|R(x)) &
+ (~(\<exists>x. P(x)) --> (\<exists>x. Q(x))) & (\<forall>x. Q(x)|R(x) --> S(x))
+ --> (\<exists>x. P(x)&R(x))"
+by blast
+
+text{*25*}
+lemma "(\<exists>x. P(x)) &
+ (\<forall>x. L(x) --> ~ (M(x) & R(x))) &
+ (\<forall>x. P(x) --> (M(x) & L(x))) &
+ ((\<forall>x. P(x)-->Q(x)) | (\<exists>x. P(x)&R(x)))
+ --> (\<exists>x. Q(x)&P(x))"
+by blast
+
+text{*26*}
+lemma "((\<exists>x. p(x)) <-> (\<exists>x. q(x))) &
+ (\<forall>x. \<forall>y. p(x) & q(y) --> (r(x) <-> s(y)))
+ --> ((\<forall>x. p(x)-->r(x)) <-> (\<forall>x. q(x)-->s(x)))"
+by blast
+
+text{*27*}
+lemma "(\<exists>x. P(x) & ~Q(x)) &
+ (\<forall>x. P(x) --> R(x)) &
+ (\<forall>x. M(x) & L(x) --> P(x)) &
+ ((\<exists>x. R(x) & ~ Q(x)) --> (\<forall>x. L(x) --> ~ R(x)))
+ --> (\<forall>x. M(x) --> ~L(x))"
+by blast
+
+text{*28. AMENDED*}
+lemma "(\<forall>x. P(x) --> (\<forall>x. Q(x))) &
+ ((\<forall>x. Q(x)|R(x)) --> (\<exists>x. Q(x)&S(x))) &
+ ((\<exists>x. S(x)) --> (\<forall>x. L(x) --> M(x)))
+ --> (\<forall>x. P(x) & L(x) --> M(x))"
+by blast
+
+text{*29. Essentially the same as Principia Mathematica *11.71*}
+lemma "(\<exists>x. P(x)) & (\<exists>y. Q(y))
+ --> ((\<forall>x. P(x)-->R(x)) & (\<forall>y. Q(y)-->S(y)) <->
+ (\<forall>x y. P(x) & Q(y) --> R(x) & S(y)))"
+by blast
+
+text{*30*}
+lemma "(\<forall>x. P(x) | Q(x) --> ~ R(x)) &
+ (\<forall>x. (Q(x) --> ~ S(x)) --> P(x) & R(x))
+ --> (\<forall>x. S(x))"
+by blast
+
+text{*31*}
+lemma "~(\<exists>x. P(x) & (Q(x) | R(x))) &
+ (\<exists>x. L(x) & P(x)) &
+ (\<forall>x. ~ R(x) --> M(x))
+ --> (\<exists>x. L(x) & M(x))"
+by blast
+
+text{*32*}
+lemma "(\<forall>x. P(x) & (Q(x)|R(x))-->S(x)) &
+ (\<forall>x. S(x) & R(x) --> L(x)) &
+ (\<forall>x. M(x) --> R(x))
+ --> (\<forall>x. P(x) & M(x) --> L(x))"
+by blast
+
+text{*33*}
+lemma "(\<forall>x. P(a) & (P(x)-->P(b))-->P(c)) <->
+ (\<forall>x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))"
+by blast
+
+text{*34 AMENDED (TWICE!!). Andrews's challenge*}
+lemma "((\<exists>x. \<forall>y. p(x) <-> p(y)) <->
+ ((\<exists>x. q(x)) <-> (\<forall>y. p(y)))) <->
+ ((\<exists>x. \<forall>y. q(x) <-> q(y)) <->
+ ((\<exists>x. p(x)) <-> (\<forall>y. q(y))))"
+by blast
+
+text{*35*}
+lemma "\<exists>x y. P(x,y) --> (\<forall>u v. P(u,v))"
+by blast
+
+text{*36*}
+lemma "(\<forall>x. \<exists>y. J(x,y)) &
+ (\<forall>x. \<exists>y. G(x,y)) &
+ (\<forall>x y. J(x,y) | G(x,y) --> (\<forall>z. J(y,z) | G(y,z) --> H(x,z)))
+ --> (\<forall>x. \<exists>y. H(x,y))"
+by blast
+
+text{*37*}
+lemma "(\<forall>z. \<exists>w. \<forall>x. \<exists>y.
+ (P(x,z)-->P(y,w)) & P(y,z) & (P(y,w) --> (\<exists>u. Q(u,w)))) &
+ (\<forall>x z. ~P(x,z) --> (\<exists>y. Q(y,z))) &
+ ((\<exists>x y. Q(x,y)) --> (\<forall>x. R(x,x)))
+ --> (\<forall>x. \<exists>y. R(x,y))"
+by blast
+
+text{*38*}
+lemma "(\<forall>x. p(a) & (p(x) --> (\<exists>y. p(y) & r(x,y))) -->
+ (\<exists>z. \<exists>w. p(z) & r(x,w) & r(w,z))) <->
+ (\<forall>x. (~p(a) | p(x) | (\<exists>z. \<exists>w. p(z) & r(x,w) & r(w,z))) &
+ (~p(a) | ~(\<exists>y. p(y) & r(x,y)) |
+ (\<exists>z. \<exists>w. p(z) & r(x,w) & r(w,z))))"
+by blast
+
+text{*39*}
+lemma "~ (\<exists>x. \<forall>y. F(y,x) <-> ~F(y,y))"
+by blast
+
+text{*40. AMENDED*}
+lemma "(\<exists>y. \<forall>x. F(x,y) <-> F(x,x)) -->
+ ~(\<forall>x. \<exists>y. \<forall>z. F(z,y) <-> ~ F(z,x))"
+by blast
+
+text{*41*}
+lemma "(\<forall>z. \<exists>y. \<forall>x. f(x,y) <-> f(x,z) & ~ f(x,x))
+ --> ~ (\<exists>z. \<forall>x. f(x,z))"
+by blast
+
+text{*42*}
+lemma "~ (\<exists>y. \<forall>x. p(x,y) <-> ~ (\<exists>z. p(x,z) & p(z,x)))"
+by blast
+
+text{*43*}
+lemma "(\<forall>x. \<forall>y. q(x,y) <-> (\<forall>z. p(z,x) <-> p(z,y)))
+ --> (\<forall>x. \<forall>y. q(x,y) <-> q(y,x))"
+by blast
+
+(*Other proofs: Can use auto, which cheats by using rewriting!
+ Deepen_tac alone requires 253 secs. Or
+ by (mini_tac 1 THEN Deepen_tac 5 1) *)
+
+text{*44*}
+lemma "(\<forall>x. f(x) --> (\<exists>y. g(y) & h(x,y) & (\<exists>y. g(y) & ~ h(x,y)))) &
+ (\<exists>x. j(x) & (\<forall>y. g(y) --> h(x,y)))
+ --> (\<exists>x. j(x) & ~f(x))"
+by blast
+
+text{*45*}
+lemma "(\<forall>x. f(x) & (\<forall>y. g(y) & h(x,y) --> j(x,y))
+ --> (\<forall>y. g(y) & h(x,y) --> k(y))) &
+ ~ (\<exists>y. l(y) & k(y)) &
+ (\<exists>x. f(x) & (\<forall>y. h(x,y) --> l(y))
+ & (\<forall>y. g(y) & h(x,y) --> j(x,y)))
+ --> (\<exists>x. f(x) & ~ (\<exists>y. g(y) & h(x,y)))"
+by blast
+
+
+text{*46*}
+lemma "(\<forall>x. f(x) & (\<forall>y. f(y) & h(y,x) --> g(y)) --> g(x)) &
+ ((\<exists>x. f(x) & ~g(x)) -->
+ (\<exists>x. f(x) & ~g(x) & (\<forall>y. f(y) & ~g(y) --> j(x,y)))) &
+ (\<forall>x y. f(x) & f(y) & h(x,y) --> ~j(y,x))
+ --> (\<forall>x. f(x) --> g(x))"
+by blast
+
+
+subsection{*Problems (mainly) involving equality or functions*}
+
+text{*48*}
+lemma "(a=b | c=d) & (a=c | b=d) --> a=d | b=c"
+by blast
+
+text{*49 NOT PROVED AUTOMATICALLY. Hard because it involves substitution
+ for Vars
+ the type constraint ensures that x,y,z have the same type as a,b,u. *}
+lemma "(\<exists>x y::'a. \<forall>z. z=x | z=y) & P(a) & P(b) & a~=b
+ --> (\<forall>u::'a. P(u))"
+apply safe
+apply (rule_tac x = a in allE, assumption)
+apply (rule_tac x = b in allE, assumption, fast)
+ --{*blast's treatment of equality can't do it*}
+done
+
+text{*50. (What has this to do with equality?) *}
+lemma "(\<forall>x. P(a,x) | (\<forall>y. P(x,y))) --> (\<exists>x. \<forall>y. P(x,y))"
+by blast
+
+text{*51*}
+lemma "(\<exists>z w. \<forall>x y. P(x,y) <-> (x=z & y=w)) -->
+ (\<exists>z. \<forall>x. \<exists>w. (\<forall>y. P(x,y) <-> y=w) <-> x=z)"
+by blast
+
+text{*52*}
+text{*Almost the same as 51. *}
+lemma "(\<exists>z w. \<forall>x y. P(x,y) <-> (x=z & y=w)) -->
+ (\<exists>w. \<forall>y. \<exists>z. (\<forall>x. P(x,y) <-> x=z) <-> y=w)"
+by blast
+
+text{*55*}
+
+(*Original, equational version by Len Schubert, via Pelletier *** NOT PROVED
+Goal "(\<exists>x. lives(x) & killed(x,agatha)) &
+ lives(agatha) & lives(butler) & lives(charles) &
+ (\<forall>x. lives(x) --> x=agatha | x=butler | x=charles) &
+ (\<forall>x y. killed(x,y) --> hates(x,y)) &
+ (\<forall>x y. killed(x,y) --> ~richer(x,y)) &
+ (\<forall>x. hates(agatha,x) --> ~hates(charles,x)) &
+ (\<forall>x. ~ x=butler --> hates(agatha,x)) &
+ (\<forall>x. ~richer(x,agatha) --> hates(butler,x)) &
+ (\<forall>x. hates(agatha,x) --> hates(butler,x)) &
+ (\<forall>x. \<exists>y. ~hates(x,y)) &
+ ~ agatha=butler -->
+ killed(?who,agatha)"
+by Safe_tac;
+by (dres_inst_tac [("x1","x")] (spec RS mp) 1);
+by (assume_tac 1);
+by (etac (spec RS exE) 1);
+by (REPEAT (etac allE 1));
+by (Blast_tac 1);
+result();
+****)
+
+text{*Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
+ fast DISCOVERS who killed Agatha. *}
+lemma "lives(agatha) & lives(butler) & lives(charles) &
+ (killed(agatha,agatha) | killed(butler,agatha) | killed(charles,agatha)) &
+ (\<forall>x y. killed(x,y) --> hates(x,y) & ~richer(x,y)) &
+ (\<forall>x. hates(agatha,x) --> ~hates(charles,x)) &
+ (hates(agatha,agatha) & hates(agatha,charles)) &
+ (\<forall>x. lives(x) & ~richer(x,agatha) --> hates(butler,x)) &
+ (\<forall>x. hates(agatha,x) --> hates(butler,x)) &
+ (\<forall>x. ~hates(x,agatha) | ~hates(x,butler) | ~hates(x,charles)) -->
+ killed(?who,agatha)"
+by fast --{*MUCH faster than blast*}
+
+
+text{*56*}
+lemma "(\<forall>x. (\<exists>y. P(y) & x=f(y)) --> P(x)) <-> (\<forall>x. P(x) --> P(f(x)))"
+by blast
+
+text{*57*}
+lemma "P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) &
+ (\<forall>x y z. P(x,y) & P(y,z) --> P(x,z)) --> P(f(a,b), f(a,c))"
+by blast
+
+text{*58 NOT PROVED AUTOMATICALLY*}
+lemma "(\<forall>x y. f(x)=g(y)) --> (\<forall>x y. f(f(x))=f(g(y)))"
+by (slow elim: subst_context)
+
+
+text{*59*}
+lemma "(\<forall>x. P(x) <-> ~P(f(x))) --> (\<exists>x. P(x) & ~P(f(x)))"
+by blast
+
+text{*60*}
+lemma "\<forall>x. P(x,f(x)) <-> (\<exists>y. (\<forall>z. P(z,y) --> P(z,f(x))) & P(x,y))"
+by blast
+
+text{*62 as corrected in JAR 18 (1997), page 135*}
+lemma "(\<forall>x. p(a) & (p(x) --> p(f(x))) --> p(f(f(x)))) <->
+ (\<forall>x. (~p(a) | p(x) | p(f(f(x)))) &
+ (~p(a) | ~p(f(x)) | p(f(f(x)))))"
+by blast
+
+text{*From Davis, Obvious Logical Inferences, IJCAI-81, 530-531
+ fast indeed copes!*}
+lemma "(\<forall>x. F(x) & ~G(x) --> (\<exists>y. H(x,y) & J(y))) &
+ (\<exists>x. K(x) & F(x) & (\<forall>y. H(x,y) --> K(y))) &
+ (\<forall>x. K(x) --> ~G(x)) --> (\<exists>x. K(x) & J(x))"
+by fast
+
+text{*From Rudnicki, Obvious Inferences, JAR 3 (1987), 383-393.
+ It does seem obvious!*}
+lemma "(\<forall>x. F(x) & ~G(x) --> (\<exists>y. H(x,y) & J(y))) &
+ (\<exists>x. K(x) & F(x) & (\<forall>y. H(x,y) --> K(y))) &
+ (\<forall>x. K(x) --> ~G(x)) --> (\<exists>x. K(x) --> ~G(x))"
+by fast
+
+text{*Halting problem: Formulation of Li Dafa (AAR Newsletter 27, Oct 1994.)
+ author U. Egly*}
+lemma "((\<exists>x. A(x) & (\<forall>y. C(y) --> (\<forall>z. D(x,y,z)))) -->
+ (\<exists>w. C(w) & (\<forall>y. C(y) --> (\<forall>z. D(w,y,z)))))
+ &
+ (\<forall>w. C(w) & (\<forall>u. C(u) --> (\<forall>v. D(w,u,v))) -->
+ (\<forall>y z.
+ (C(y) & P(y,z) --> Q(w,y,z) & OO(w,g)) &
+ (C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))))
+ &
+ (\<forall>w. C(w) &
+ (\<forall>y z.
+ (C(y) & P(y,z) --> Q(w,y,z) & OO(w,g)) &
+ (C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))) -->
+ (\<exists>v. C(v) &
+ (\<forall>y. ((C(y) & Q(w,y,y)) & OO(w,g) --> ~P(v,y)) &
+ ((C(y) & Q(w,y,y)) & OO(w,b) --> P(v,y) & OO(v,b)))))
+ -->
+ ~ (\<exists>x. A(x) & (\<forall>y. C(y) --> (\<forall>z. D(x,y,z))))"
+by (tactic{*Blast.depth_tac (claset ()) 12 1*})
+ --{*Needed because the search for depths below 12 is very slow*}
+
+
+text{*Halting problem II: credited to M. Bruschi by Li Dafa in JAR 18(1), p.105*}
+lemma "((\<exists>x. A(x) & (\<forall>y. C(y) --> (\<forall>z. D(x,y,z)))) -->
+ (\<exists>w. C(w) & (\<forall>y. C(y) --> (\<forall>z. D(w,y,z)))))
+ &
+ (\<forall>w. C(w) & (\<forall>u. C(u) --> (\<forall>v. D(w,u,v))) -->
+ (\<forall>y z.
+ (C(y) & P(y,z) --> Q(w,y,z) & OO(w,g)) &
+ (C(y) & ~P(y,z) --> Q(w,y,z) & OO(w,b))))
+ &
+ ((\<exists>w. C(w) & (\<forall>y. (C(y) & P(y,y) --> Q(w,y,y) & OO(w,g)) &
+ (C(y) & ~P(y,y) --> Q(w,y,y) & OO(w,b))))
+ -->
+ (\<exists>v. C(v) & (\<forall>y. (C(y) & P(y,y) --> P(v,y) & OO(v,g)) &
+ (C(y) & ~P(y,y) --> P(v,y) & OO(v,b)))))
+ -->
+ ((\<exists>v. C(v) & (\<forall>y. (C(y) & P(y,y) --> P(v,y) & OO(v,g)) &
+ (C(y) & ~P(y,y) --> P(v,y) & OO(v,b))))
+ -->
+ (\<exists>u. C(u) & (\<forall>y. (C(y) & P(y,y) --> ~P(u,y)) &
+ (C(y) & ~P(y,y) --> P(u,y) & OO(u,b)))))
+ -->
+ ~ (\<exists>x. A(x) & (\<forall>y. C(y) --> (\<forall>z. D(x,y,z))))"
+by blast
+
+text{* Challenge found on info-hol *}
+lemma "\<forall>x. \<exists>v w. \<forall>y z. P(x) & Q(y) --> (P(v) | R(w)) & (R(z) --> Q(v))"
+by blast
+
+text{*Attributed to Lewis Carroll by S. G. Pulman. The first or last assumption
+can be deleted.*}
+lemma "(\<forall>x. honest(x) & industrious(x) --> healthy(x)) &
+ ~ (\<exists>x. grocer(x) & healthy(x)) &
+ (\<forall>x. industrious(x) & grocer(x) --> honest(x)) &
+ (\<forall>x. cyclist(x) --> industrious(x)) &
+ (\<forall>x. ~healthy(x) & cyclist(x) --> ~honest(x))
+ --> (\<forall>x. grocer(x) --> ~cyclist(x))"
+by blast
+
+
+(*Runtimes for old versions of this file:
+Thu Jul 23 1992: loaded in 467s using iffE [on SPARC2]
+Mon Nov 14 1994: loaded in 144s [on SPARC10, with deepen_tac]
+Wed Nov 16 1994: loaded in 138s [after addition of norm_term_skip]
+Mon Nov 21 1994: loaded in 131s [DEPTH_FIRST suppressing repetitions]
+
+Further runtimes on a Sun-4
+Tue Mar 4 1997: loaded in 93s (version 94-7)
+Tue Mar 4 1997: loaded in 89s
+Thu Apr 3 1997: loaded in 44s--using mostly Blast_tac
+Thu Apr 3 1997: loaded in 96s--addition of two Halting Probs
+Thu Apr 3 1997: loaded in 98s--using lim-1 for all haz rules
+Tue Dec 2 1997: loaded in 107s--added 46; new equalSubst
+Fri Dec 12 1997: loaded in 91s--faster proof reconstruction
+Thu Dec 18 1997: loaded in 94s--two new "obvious theorems" (??)
+*)
+
+end
+