doc-src/TutorialI/Protocol/Message.thy
changeset 11250 c8bbf4c4bc2d
child 14179 04f905c13502
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/TutorialI/Protocol/Message.thy	Wed Apr 11 11:53:54 2001 +0200
@@ -0,0 +1,147 @@
+(*  Title:      HOL/Auth/Message
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1996  University of Cambridge
+
+Datatypes of agents and messages;
+Inductive relations "parts", "analz" and "synth"
+*)
+
+theory Message = Main
+files ("Message_lemmas.ML"):
+
+(*Needed occasionally with spy_analz_tac, e.g. in analz_insert_Key_newK*)
+lemma [simp] : "A Un (B Un A) = B Un A"
+by blast
+
+types 
+  key = nat
+
+consts
+  invKey :: "key=>key"
+
+axioms
+  invKey [simp] : "invKey (invKey K) = K"
+
+  (*The inverse of a symmetric key is itself;
+    that of a public key is the private key and vice versa*)
+
+constdefs
+  symKeys :: "key set"
+  "symKeys == {K. invKey K = K}"
+
+datatype  (*We allow any number of friendly agents*)
+  agent = Server | Friend nat | Spy
+
+datatype
+     msg = Agent  agent	    (*Agent names*)
+         | Number nat       (*Ordinary integers, timestamps, ...*)
+         | Nonce  nat       (*Unguessable nonces*)
+         | Key    key       (*Crypto keys*)
+	 | Hash   msg       (*Hashing*)
+	 | MPair  msg msg   (*Compound messages*)
+	 | Crypt  key msg   (*Encryption, public- or shared-key*)
+
+
+(*Concrete syntax: messages appear as {|A,B,NA|}, etc...*)
+syntax
+  "@MTuple"      :: "['a, args] => 'a * 'b"       ("(2{|_,/ _|})")
+
+syntax (xsymbols)
+  "@MTuple"      :: "['a, args] => 'a * 'b"       ("(2\<lbrace>_,/ _\<rbrace>)")
+
+translations
+  "{|x, y, z|}"   == "{|x, {|y, z|}|}"
+  "{|x, y|}"      == "MPair x y"
+
+
+constdefs
+  (*Message Y, paired with a MAC computed with the help of X*)
+  HPair :: "[msg,msg] => msg"                       ("(4Hash[_] /_)" [0, 1000])
+    "Hash[X] Y == {| Hash{|X,Y|}, Y|}"
+
+  (*Keys useful to decrypt elements of a message set*)
+  keysFor :: "msg set => key set"
+  "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
+
+(** Inductive definition of all "parts" of a message.  **)
+
+consts  parts   :: "msg set => msg set"
+inductive "parts H"
+  intros 
+    Inj [intro]:               "X \<in> H ==> X \<in> parts H"
+    Fst:         "{|X,Y|}   \<in> parts H ==> X \<in> parts H"
+    Snd:         "{|X,Y|}   \<in> parts H ==> Y \<in> parts H"
+    Body:        "Crypt K X \<in> parts H ==> X \<in> parts H"
+
+
+(*Monotonicity*)
+lemma parts_mono: "G<=H ==> parts(G) <= parts(H)"
+apply auto
+apply (erule parts.induct) 
+apply (auto dest: Fst Snd Body) 
+done
+
+
+(** Inductive definition of "analz" -- what can be broken down from a set of
+    messages, including keys.  A form of downward closure.  Pairs can
+    be taken apart; messages decrypted with known keys.  **)
+
+consts  analz   :: "msg set => msg set"
+inductive "analz H"
+  intros 
+    Inj [intro,simp] :    "X \<in> H ==> X \<in> analz H"
+    Fst:     "{|X,Y|} \<in> analz H ==> X \<in> analz H"
+    Snd:     "{|X,Y|} \<in> analz H ==> Y \<in> analz H"
+    Decrypt [dest]: 
+             "[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H"
+
+
+(*Monotonicity; Lemma 1 of Lowe's paper*)
+lemma analz_mono: "G<=H ==> analz(G) <= analz(H)"
+apply auto
+apply (erule analz.induct) 
+apply (auto dest: Fst Snd) 
+done
+
+(** Inductive definition of "synth" -- what can be built up from a set of
+    messages.  A form of upward closure.  Pairs can be built, messages
+    encrypted with known keys.  Agent names are public domain.
+    Numbers can be guessed, but Nonces cannot be.  **)
+
+consts  synth   :: "msg set => msg set"
+inductive "synth H"
+  intros 
+    Inj    [intro]:   "X \<in> H ==> X \<in> synth H"
+    Agent  [intro]:   "Agent agt \<in> synth H"
+    Number [intro]:   "Number n  \<in> synth H"
+    Hash   [intro]:   "X \<in> synth H ==> Hash X \<in> synth H"
+    MPair  [intro]:   "[|X \<in> synth H;  Y \<in> synth H|] ==> {|X,Y|} \<in> synth H"
+    Crypt  [intro]:   "[|X \<in> synth H;  Key(K) \<in> H|] ==> Crypt K X \<in> synth H"
+
+(*Monotonicity*)
+lemma synth_mono: "G<=H ==> synth(G) <= synth(H)"
+apply auto
+apply (erule synth.induct) 
+apply (auto dest: Fst Snd Body) 
+done
+
+(*NO Agent_synth, as any Agent name can be synthesized.  Ditto for Number*)
+inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H"
+inductive_cases Key_synth   [elim!]: "Key K \<in> synth H"
+inductive_cases Hash_synth  [elim!]: "Hash X \<in> synth H"
+inductive_cases MPair_synth [elim!]: "{|X,Y|} \<in> synth H"
+inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H"
+
+use "Message_lemmas.ML"
+
+lemma Fake_parts_insert_in_Un:
+     "[|Z \<in> parts (insert X H);  X: synth (analz H)|] 
+      ==> Z \<in>  synth (analz H) \<union> parts H";
+by (blast dest: Fake_parts_insert  [THEN subsetD, dest])
+
+method_setup spy_analz = {*
+    Method.no_args (Method.METHOD (fn facts => spy_analz_tac 1)) *}
+    "for proving the Fake case when analz is involved"
+
+end