src/ZF/Arith.thy
changeset 13356 c9cfe1638bf2
parent 13328 703de709a64b
child 13361 5005d34425bb
--- a/src/ZF/Arith.thy	Sun Jul 14 15:11:21 2002 +0200
+++ b/src/ZF/Arith.thy	Sun Jul 14 15:14:43 2002 +0200
@@ -87,7 +87,7 @@
 lemmas zero_lt_natE = zero_lt_lemma [THEN bexE, standard]
 
 
-(** natify: coercion to "nat" **)
+subsection{*@{text natify}, the Coercion to @{term nat}*}
 
 lemma pred_succ_eq [simp]: "pred(succ(y)) = y"
 by (unfold pred_def, auto)
@@ -163,7 +163,7 @@
 by (simp add: div_def)
 
 
-(*** Typing rules ***)
+subsection{*Typing rules*}
 
 (** Addition **)
 
@@ -218,7 +218,7 @@
 done
 
 
-(*** Addition ***)
+subsection{*Addition*}
 
 (*Natify has weakened this law, compared with the older approach*)
 lemma add_0_natify [simp]: "0 #+ m = natify(m)"
@@ -308,7 +308,7 @@
 by (drule add_lt_elim1_natify, auto)
 
 
-(*** Monotonicity of Addition ***)
+subsection{*Monotonicity of Addition*}
 
 (*strict, in 1st argument; proof is by rule induction on 'less than'.
   Still need j:nat, for consider j = omega.  Then we can have i<omega,
@@ -402,7 +402,7 @@
 by auto
 
 
-(*** Multiplication [the simprocs need these laws] ***)
+subsection{*Multiplication*}
 
 lemma mult_0 [simp]: "0 #* m = 0"
 by (simp add: mult_def)