src/HOL/Datatype.thy
changeset 20819 cb6ae81dd0be
parent 20798 3275b03e2fff
child 20847 7e8c724339e0
--- a/src/HOL/Datatype.thy	Sun Oct 01 18:30:04 2006 +0200
+++ b/src/HOL/Datatype.thy	Sun Oct 01 22:19:21 2006 +0200
@@ -1,14 +1,548 @@
 (*  Title:      HOL/Datatype.thy
     ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
+
+Could <*> be generalized to a general summation (Sigma)?
 *)
 
-header {* Datatypes *}
+header{*Analogues of the Cartesian Product and Disjoint Sum for Datatypes*}
 
 theory Datatype
-imports Datatype_Universe
+imports NatArith Sum_Type
 begin
 
+
+typedef (Node)
+  ('a,'b) node = "{p. EX f x k. p = (f::nat=>'b+nat, x::'a+nat) & f k = Inr 0}"
+    --{*it is a subtype of @{text "(nat=>'b+nat) * ('a+nat)"}*}
+  by auto
+
+text{*Datatypes will be represented by sets of type @{text node}*}
+
+types 'a item        = "('a, unit) node set"
+      ('a, 'b) dtree = "('a, 'b) node set"
+
+consts
+  apfst     :: "['a=>'c, 'a*'b] => 'c*'b"
+  Push      :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))"
+
+  Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node"
+  ndepth    :: "('a, 'b) node => nat"
+
+  Atom      :: "('a + nat) => ('a, 'b) dtree"
+  Leaf      :: "'a => ('a, 'b) dtree"
+  Numb      :: "nat => ('a, 'b) dtree"
+  Scons     :: "[('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree"
+  In0       :: "('a, 'b) dtree => ('a, 'b) dtree"
+  In1       :: "('a, 'b) dtree => ('a, 'b) dtree"
+  Lim       :: "('b => ('a, 'b) dtree) => ('a, 'b) dtree"
+
+  ntrunc    :: "[nat, ('a, 'b) dtree] => ('a, 'b) dtree"
+
+  uprod     :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
+  usum      :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
+
+  Split     :: "[[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
+  Case      :: "[[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
+
+  dprod     :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
+                => (('a, 'b) dtree * ('a, 'b) dtree)set"
+  dsum      :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
+                => (('a, 'b) dtree * ('a, 'b) dtree)set"
+
+
+defs
+
+  Push_Node_def:  "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))"
+
+  (*crude "lists" of nats -- needed for the constructions*)
+  apfst_def:  "apfst == (%f (x,y). (f(x),y))"
+  Push_def:   "Push == (%b h. nat_case b h)"
+
+  (** operations on S-expressions -- sets of nodes **)
+
+  (*S-expression constructors*)
+  Atom_def:   "Atom == (%x. {Abs_Node((%k. Inr 0, x))})"
+  Scons_def:  "Scons M N == (Push_Node (Inr 1) ` M) Un (Push_Node (Inr (Suc 1)) ` N)"
+
+  (*Leaf nodes, with arbitrary or nat labels*)
+  Leaf_def:   "Leaf == Atom o Inl"
+  Numb_def:   "Numb == Atom o Inr"
+
+  (*Injections of the "disjoint sum"*)
+  In0_def:    "In0(M) == Scons (Numb 0) M"
+  In1_def:    "In1(M) == Scons (Numb 1) M"
+
+  (*Function spaces*)
+  Lim_def: "Lim f == Union {z. ? x. z = Push_Node (Inl x) ` (f x)}"
+
+  (*the set of nodes with depth less than k*)
+  ndepth_def: "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)"
+  ntrunc_def: "ntrunc k N == {n. n:N & ndepth(n)<k}"
+
+  (*products and sums for the "universe"*)
+  uprod_def:  "uprod A B == UN x:A. UN y:B. { Scons x y }"
+  usum_def:   "usum A B == In0`A Un In1`B"
+
+  (*the corresponding eliminators*)
+  Split_def:  "Split c M == THE u. EX x y. M = Scons x y & u = c x y"
+
+  Case_def:   "Case c d M == THE u.  (EX x . M = In0(x) & u = c(x))
+                                  | (EX y . M = In1(y) & u = d(y))"
+
+
+  (** equality for the "universe" **)
+
+  dprod_def:  "dprod r s == UN (x,x'):r. UN (y,y'):s. {(Scons x y, Scons x' y')}"
+
+  dsum_def:   "dsum r s == (UN (x,x'):r. {(In0(x),In0(x'))}) Un
+                          (UN (y,y'):s. {(In1(y),In1(y'))})"
+
+
+
+(** apfst -- can be used in similar type definitions **)
+
+lemma apfst_conv [simp]: "apfst f (a,b) = (f(a),b)"
+by (simp add: apfst_def)
+
+
+lemma apfst_convE: 
+    "[| q = apfst f p;  !!x y. [| p = (x,y);  q = (f(x),y) |] ==> R  
+     |] ==> R"
+by (force simp add: apfst_def)
+
+(** Push -- an injection, analogous to Cons on lists **)
+
+lemma Push_inject1: "Push i f = Push j g  ==> i=j"
+apply (simp add: Push_def expand_fun_eq) 
+apply (drule_tac x=0 in spec, simp) 
+done
+
+lemma Push_inject2: "Push i f = Push j g  ==> f=g"
+apply (auto simp add: Push_def expand_fun_eq) 
+apply (drule_tac x="Suc x" in spec, simp) 
+done
+
+lemma Push_inject:
+    "[| Push i f =Push j g;  [| i=j;  f=g |] ==> P |] ==> P"
+by (blast dest: Push_inject1 Push_inject2) 
+
+lemma Push_neq_K0: "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P"
+by (auto simp add: Push_def expand_fun_eq split: nat.split_asm)
+
+lemmas Abs_Node_inj = Abs_Node_inject [THEN [2] rev_iffD1, standard]
+
+
+(*** Introduction rules for Node ***)
+
+lemma Node_K0_I: "(%k. Inr 0, a) : Node"
+by (simp add: Node_def)
+
+lemma Node_Push_I: "p: Node ==> apfst (Push i) p : Node"
+apply (simp add: Node_def Push_def) 
+apply (fast intro!: apfst_conv nat_case_Suc [THEN trans])
+done
+
+
+subsection{*Freeness: Distinctness of Constructors*}
+
+(** Scons vs Atom **)
+
+lemma Scons_not_Atom [iff]: "Scons M N \<noteq> Atom(a)"
+apply (simp add: Atom_def Scons_def Push_Node_def One_nat_def)
+apply (blast intro: Node_K0_I Rep_Node [THEN Node_Push_I] 
+         dest!: Abs_Node_inj 
+         elim!: apfst_convE sym [THEN Push_neq_K0])  
+done
+
+lemmas Atom_not_Scons = Scons_not_Atom [THEN not_sym, standard]
+declare Atom_not_Scons [iff]
+
+(*** Injectiveness ***)
+
+(** Atomic nodes **)
+
+lemma inj_Atom: "inj(Atom)"
+apply (simp add: Atom_def)
+apply (blast intro!: inj_onI Node_K0_I dest!: Abs_Node_inj)
+done
+lemmas Atom_inject = inj_Atom [THEN injD, standard]
+
+lemma Atom_Atom_eq [iff]: "(Atom(a)=Atom(b)) = (a=b)"
+by (blast dest!: Atom_inject)
+
+lemma inj_Leaf: "inj(Leaf)"
+apply (simp add: Leaf_def o_def)
+apply (rule inj_onI)
+apply (erule Atom_inject [THEN Inl_inject])
+done
+
+lemmas Leaf_inject = inj_Leaf [THEN injD, standard]
+declare Leaf_inject [dest!]
+
+lemma inj_Numb: "inj(Numb)"
+apply (simp add: Numb_def o_def)
+apply (rule inj_onI)
+apply (erule Atom_inject [THEN Inr_inject])
+done
+
+lemmas Numb_inject = inj_Numb [THEN injD, standard]
+declare Numb_inject [dest!]
+
+
+(** Injectiveness of Push_Node **)
+
+lemma Push_Node_inject:
+    "[| Push_Node i m =Push_Node j n;  [| i=j;  m=n |] ==> P  
+     |] ==> P"
+apply (simp add: Push_Node_def)
+apply (erule Abs_Node_inj [THEN apfst_convE])
+apply (rule Rep_Node [THEN Node_Push_I])+
+apply (erule sym [THEN apfst_convE]) 
+apply (blast intro: Rep_Node_inject [THEN iffD1] trans sym elim!: Push_inject)
+done
+
+
+(** Injectiveness of Scons **)
+
+lemma Scons_inject_lemma1: "Scons M N <= Scons M' N' ==> M<=M'"
+apply (simp add: Scons_def One_nat_def)
+apply (blast dest!: Push_Node_inject)
+done
+
+lemma Scons_inject_lemma2: "Scons M N <= Scons M' N' ==> N<=N'"
+apply (simp add: Scons_def One_nat_def)
+apply (blast dest!: Push_Node_inject)
+done
+
+lemma Scons_inject1: "Scons M N = Scons M' N' ==> M=M'"
+apply (erule equalityE)
+apply (iprover intro: equalityI Scons_inject_lemma1)
+done
+
+lemma Scons_inject2: "Scons M N = Scons M' N' ==> N=N'"
+apply (erule equalityE)
+apply (iprover intro: equalityI Scons_inject_lemma2)
+done
+
+lemma Scons_inject:
+    "[| Scons M N = Scons M' N';  [| M=M';  N=N' |] ==> P |] ==> P"
+by (iprover dest: Scons_inject1 Scons_inject2)
+
+lemma Scons_Scons_eq [iff]: "(Scons M N = Scons M' N') = (M=M' & N=N')"
+by (blast elim!: Scons_inject)
+
+(*** Distinctness involving Leaf and Numb ***)
+
+(** Scons vs Leaf **)
+
+lemma Scons_not_Leaf [iff]: "Scons M N \<noteq> Leaf(a)"
+by (simp add: Leaf_def o_def Scons_not_Atom)
+
+lemmas Leaf_not_Scons = Scons_not_Leaf [THEN not_sym, standard]
+declare Leaf_not_Scons [iff]
+
+(** Scons vs Numb **)
+
+lemma Scons_not_Numb [iff]: "Scons M N \<noteq> Numb(k)"
+by (simp add: Numb_def o_def Scons_not_Atom)
+
+lemmas Numb_not_Scons = Scons_not_Numb [THEN not_sym, standard]
+declare Numb_not_Scons [iff]
+
+
+(** Leaf vs Numb **)
+
+lemma Leaf_not_Numb [iff]: "Leaf(a) \<noteq> Numb(k)"
+by (simp add: Leaf_def Numb_def)
+
+lemmas Numb_not_Leaf = Leaf_not_Numb [THEN not_sym, standard]
+declare Numb_not_Leaf [iff]
+
+
+(*** ndepth -- the depth of a node ***)
+
+lemma ndepth_K0: "ndepth (Abs_Node(%k. Inr 0, x)) = 0"
+by (simp add: ndepth_def  Node_K0_I [THEN Abs_Node_inverse] Least_equality)
+
+lemma ndepth_Push_Node_aux:
+     "nat_case (Inr (Suc i)) f k = Inr 0 --> Suc(LEAST x. f x = Inr 0) <= k"
+apply (induct_tac "k", auto)
+apply (erule Least_le)
+done
+
+lemma ndepth_Push_Node: 
+    "ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))"
+apply (insert Rep_Node [of n, unfolded Node_def])
+apply (auto simp add: ndepth_def Push_Node_def
+                 Rep_Node [THEN Node_Push_I, THEN Abs_Node_inverse])
+apply (rule Least_equality)
+apply (auto simp add: Push_def ndepth_Push_Node_aux)
+apply (erule LeastI)
+done
+
+
+(*** ntrunc applied to the various node sets ***)
+
+lemma ntrunc_0 [simp]: "ntrunc 0 M = {}"
+by (simp add: ntrunc_def)
+
+lemma ntrunc_Atom [simp]: "ntrunc (Suc k) (Atom a) = Atom(a)"
+by (auto simp add: Atom_def ntrunc_def ndepth_K0)
+
+lemma ntrunc_Leaf [simp]: "ntrunc (Suc k) (Leaf a) = Leaf(a)"
+by (simp add: Leaf_def o_def ntrunc_Atom)
+
+lemma ntrunc_Numb [simp]: "ntrunc (Suc k) (Numb i) = Numb(i)"
+by (simp add: Numb_def o_def ntrunc_Atom)
+
+lemma ntrunc_Scons [simp]: 
+    "ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)"
+by (auto simp add: Scons_def ntrunc_def One_nat_def ndepth_Push_Node) 
+
+
+
+(** Injection nodes **)
+
+lemma ntrunc_one_In0 [simp]: "ntrunc (Suc 0) (In0 M) = {}"
+apply (simp add: In0_def)
+apply (simp add: Scons_def)
+done
+
+lemma ntrunc_In0 [simp]: "ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)"
+by (simp add: In0_def)
+
+lemma ntrunc_one_In1 [simp]: "ntrunc (Suc 0) (In1 M) = {}"
+apply (simp add: In1_def)
+apply (simp add: Scons_def)
+done
+
+lemma ntrunc_In1 [simp]: "ntrunc (Suc(Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)"
+by (simp add: In1_def)
+
+
+subsection{*Set Constructions*}
+
+
+(*** Cartesian Product ***)
+
+lemma uprodI [intro!]: "[| M:A;  N:B |] ==> Scons M N : uprod A B"
+by (simp add: uprod_def)
+
+(*The general elimination rule*)
+lemma uprodE [elim!]:
+    "[| c : uprod A B;   
+        !!x y. [| x:A;  y:B;  c = Scons x y |] ==> P  
+     |] ==> P"
+by (auto simp add: uprod_def) 
+
+
+(*Elimination of a pair -- introduces no eigenvariables*)
+lemma uprodE2: "[| Scons M N : uprod A B;  [| M:A;  N:B |] ==> P |] ==> P"
+by (auto simp add: uprod_def)
+
+
+(*** Disjoint Sum ***)
+
+lemma usum_In0I [intro]: "M:A ==> In0(M) : usum A B"
+by (simp add: usum_def)
+
+lemma usum_In1I [intro]: "N:B ==> In1(N) : usum A B"
+by (simp add: usum_def)
+
+lemma usumE [elim!]: 
+    "[| u : usum A B;   
+        !!x. [| x:A;  u=In0(x) |] ==> P;  
+        !!y. [| y:B;  u=In1(y) |] ==> P  
+     |] ==> P"
+by (auto simp add: usum_def)
+
+
+(** Injection **)
+
+lemma In0_not_In1 [iff]: "In0(M) \<noteq> In1(N)"
+by (auto simp add: In0_def In1_def One_nat_def)
+
+lemmas In1_not_In0 = In0_not_In1 [THEN not_sym, standard]
+declare In1_not_In0 [iff]
+
+lemma In0_inject: "In0(M) = In0(N) ==>  M=N"
+by (simp add: In0_def)
+
+lemma In1_inject: "In1(M) = In1(N) ==>  M=N"
+by (simp add: In1_def)
+
+lemma In0_eq [iff]: "(In0 M = In0 N) = (M=N)"
+by (blast dest!: In0_inject)
+
+lemma In1_eq [iff]: "(In1 M = In1 N) = (M=N)"
+by (blast dest!: In1_inject)
+
+lemma inj_In0: "inj In0"
+by (blast intro!: inj_onI)
+
+lemma inj_In1: "inj In1"
+by (blast intro!: inj_onI)
+
+
+(*** Function spaces ***)
+
+lemma Lim_inject: "Lim f = Lim g ==> f = g"
+apply (simp add: Lim_def)
+apply (rule ext)
+apply (blast elim!: Push_Node_inject)
+done
+
+
+(*** proving equality of sets and functions using ntrunc ***)
+
+lemma ntrunc_subsetI: "ntrunc k M <= M"
+by (auto simp add: ntrunc_def)
+
+lemma ntrunc_subsetD: "(!!k. ntrunc k M <= N) ==> M<=N"
+by (auto simp add: ntrunc_def)
+
+(*A generalized form of the take-lemma*)
+lemma ntrunc_equality: "(!!k. ntrunc k M = ntrunc k N) ==> M=N"
+apply (rule equalityI)
+apply (rule_tac [!] ntrunc_subsetD)
+apply (rule_tac [!] ntrunc_subsetI [THEN [2] subset_trans], auto) 
+done
+
+lemma ntrunc_o_equality: 
+    "[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2"
+apply (rule ntrunc_equality [THEN ext])
+apply (simp add: expand_fun_eq) 
+done
+
+
+(*** Monotonicity ***)
+
+lemma uprod_mono: "[| A<=A';  B<=B' |] ==> uprod A B <= uprod A' B'"
+by (simp add: uprod_def, blast)
+
+lemma usum_mono: "[| A<=A';  B<=B' |] ==> usum A B <= usum A' B'"
+by (simp add: usum_def, blast)
+
+lemma Scons_mono: "[| M<=M';  N<=N' |] ==> Scons M N <= Scons M' N'"
+by (simp add: Scons_def, blast)
+
+lemma In0_mono: "M<=N ==> In0(M) <= In0(N)"
+by (simp add: In0_def subset_refl Scons_mono)
+
+lemma In1_mono: "M<=N ==> In1(M) <= In1(N)"
+by (simp add: In1_def subset_refl Scons_mono)
+
+
+(*** Split and Case ***)
+
+lemma Split [simp]: "Split c (Scons M N) = c M N"
+by (simp add: Split_def)
+
+lemma Case_In0 [simp]: "Case c d (In0 M) = c(M)"
+by (simp add: Case_def)
+
+lemma Case_In1 [simp]: "Case c d (In1 N) = d(N)"
+by (simp add: Case_def)
+
+
+
+(**** UN x. B(x) rules ****)
+
+lemma ntrunc_UN1: "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))"
+by (simp add: ntrunc_def, blast)
+
+lemma Scons_UN1_x: "Scons (UN x. f x) M = (UN x. Scons (f x) M)"
+by (simp add: Scons_def, blast)
+
+lemma Scons_UN1_y: "Scons M (UN x. f x) = (UN x. Scons M (f x))"
+by (simp add: Scons_def, blast)
+
+lemma In0_UN1: "In0(UN x. f(x)) = (UN x. In0(f(x)))"
+by (simp add: In0_def Scons_UN1_y)
+
+lemma In1_UN1: "In1(UN x. f(x)) = (UN x. In1(f(x)))"
+by (simp add: In1_def Scons_UN1_y)
+
+
+(*** Equality for Cartesian Product ***)
+
+lemma dprodI [intro!]: 
+    "[| (M,M'):r;  (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s"
+by (auto simp add: dprod_def)
+
+(*The general elimination rule*)
+lemma dprodE [elim!]: 
+    "[| c : dprod r s;   
+        !!x y x' y'. [| (x,x') : r;  (y,y') : s;  
+                        c = (Scons x y, Scons x' y') |] ==> P  
+     |] ==> P"
+by (auto simp add: dprod_def)
+
+
+(*** Equality for Disjoint Sum ***)
+
+lemma dsum_In0I [intro]: "(M,M'):r ==> (In0(M), In0(M')) : dsum r s"
+by (auto simp add: dsum_def)
+
+lemma dsum_In1I [intro]: "(N,N'):s ==> (In1(N), In1(N')) : dsum r s"
+by (auto simp add: dsum_def)
+
+lemma dsumE [elim!]: 
+    "[| w : dsum r s;   
+        !!x x'. [| (x,x') : r;  w = (In0(x), In0(x')) |] ==> P;  
+        !!y y'. [| (y,y') : s;  w = (In1(y), In1(y')) |] ==> P  
+     |] ==> P"
+by (auto simp add: dsum_def)
+
+
+(*** Monotonicity ***)
+
+lemma dprod_mono: "[| r<=r';  s<=s' |] ==> dprod r s <= dprod r' s'"
+by blast
+
+lemma dsum_mono: "[| r<=r';  s<=s' |] ==> dsum r s <= dsum r' s'"
+by blast
+
+
+(*** Bounding theorems ***)
+
+lemma dprod_Sigma: "(dprod (A <*> B) (C <*> D)) <= (uprod A C) <*> (uprod B D)"
+by blast
+
+lemmas dprod_subset_Sigma = subset_trans [OF dprod_mono dprod_Sigma, standard]
+
+(*Dependent version*)
+lemma dprod_subset_Sigma2:
+     "(dprod (Sigma A B) (Sigma C D)) <= 
+      Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))"
+by auto
+
+lemma dsum_Sigma: "(dsum (A <*> B) (C <*> D)) <= (usum A C) <*> (usum B D)"
+by blast
+
+lemmas dsum_subset_Sigma = subset_trans [OF dsum_mono dsum_Sigma, standard]
+
+
+(*** Domain ***)
+
+lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)"
+by auto
+
+lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)"
+by auto
+
+
+subsection {* Finishing the datatype package setup *}
+
+text {* Belongs to theory @{text Datatype_Universe}; hides popular names. *}
+hide (open) const Push Node Atom Leaf Numb Lim Split Case
+hide (open) type node item
+
+
+section {* Datatypes *}
+
 setup "DatatypeCodegen.setup2"
 
 subsection {* Representing primitive types *}
@@ -275,4 +809,95 @@
 code_const "OperationalEquality.eq \<Colon> 'a\<Colon>eq option \<Rightarrow> 'a option \<Rightarrow> bool"
   (Haskell infixl 4 "==")
 
+ML
+{*
+val apfst_conv = thm "apfst_conv";
+val apfst_convE = thm "apfst_convE";
+val Push_inject1 = thm "Push_inject1";
+val Push_inject2 = thm "Push_inject2";
+val Push_inject = thm "Push_inject";
+val Push_neq_K0 = thm "Push_neq_K0";
+val Abs_Node_inj = thm "Abs_Node_inj";
+val Node_K0_I = thm "Node_K0_I";
+val Node_Push_I = thm "Node_Push_I";
+val Scons_not_Atom = thm "Scons_not_Atom";
+val Atom_not_Scons = thm "Atom_not_Scons";
+val inj_Atom = thm "inj_Atom";
+val Atom_inject = thm "Atom_inject";
+val Atom_Atom_eq = thm "Atom_Atom_eq";
+val inj_Leaf = thm "inj_Leaf";
+val Leaf_inject = thm "Leaf_inject";
+val inj_Numb = thm "inj_Numb";
+val Numb_inject = thm "Numb_inject";
+val Push_Node_inject = thm "Push_Node_inject";
+val Scons_inject1 = thm "Scons_inject1";
+val Scons_inject2 = thm "Scons_inject2";
+val Scons_inject = thm "Scons_inject";
+val Scons_Scons_eq = thm "Scons_Scons_eq";
+val Scons_not_Leaf = thm "Scons_not_Leaf";
+val Leaf_not_Scons = thm "Leaf_not_Scons";
+val Scons_not_Numb = thm "Scons_not_Numb";
+val Numb_not_Scons = thm "Numb_not_Scons";
+val Leaf_not_Numb = thm "Leaf_not_Numb";
+val Numb_not_Leaf = thm "Numb_not_Leaf";
+val ndepth_K0 = thm "ndepth_K0";
+val ndepth_Push_Node_aux = thm "ndepth_Push_Node_aux";
+val ndepth_Push_Node = thm "ndepth_Push_Node";
+val ntrunc_0 = thm "ntrunc_0";
+val ntrunc_Atom = thm "ntrunc_Atom";
+val ntrunc_Leaf = thm "ntrunc_Leaf";
+val ntrunc_Numb = thm "ntrunc_Numb";
+val ntrunc_Scons = thm "ntrunc_Scons";
+val ntrunc_one_In0 = thm "ntrunc_one_In0";
+val ntrunc_In0 = thm "ntrunc_In0";
+val ntrunc_one_In1 = thm "ntrunc_one_In1";
+val ntrunc_In1 = thm "ntrunc_In1";
+val uprodI = thm "uprodI";
+val uprodE = thm "uprodE";
+val uprodE2 = thm "uprodE2";
+val usum_In0I = thm "usum_In0I";
+val usum_In1I = thm "usum_In1I";
+val usumE = thm "usumE";
+val In0_not_In1 = thm "In0_not_In1";
+val In1_not_In0 = thm "In1_not_In0";
+val In0_inject = thm "In0_inject";
+val In1_inject = thm "In1_inject";
+val In0_eq = thm "In0_eq";
+val In1_eq = thm "In1_eq";
+val inj_In0 = thm "inj_In0";
+val inj_In1 = thm "inj_In1";
+val Lim_inject = thm "Lim_inject";
+val ntrunc_subsetI = thm "ntrunc_subsetI";
+val ntrunc_subsetD = thm "ntrunc_subsetD";
+val ntrunc_equality = thm "ntrunc_equality";
+val ntrunc_o_equality = thm "ntrunc_o_equality";
+val uprod_mono = thm "uprod_mono";
+val usum_mono = thm "usum_mono";
+val Scons_mono = thm "Scons_mono";
+val In0_mono = thm "In0_mono";
+val In1_mono = thm "In1_mono";
+val Split = thm "Split";
+val Case_In0 = thm "Case_In0";
+val Case_In1 = thm "Case_In1";
+val ntrunc_UN1 = thm "ntrunc_UN1";
+val Scons_UN1_x = thm "Scons_UN1_x";
+val Scons_UN1_y = thm "Scons_UN1_y";
+val In0_UN1 = thm "In0_UN1";
+val In1_UN1 = thm "In1_UN1";
+val dprodI = thm "dprodI";
+val dprodE = thm "dprodE";
+val dsum_In0I = thm "dsum_In0I";
+val dsum_In1I = thm "dsum_In1I";
+val dsumE = thm "dsumE";
+val dprod_mono = thm "dprod_mono";
+val dsum_mono = thm "dsum_mono";
+val dprod_Sigma = thm "dprod_Sigma";
+val dprod_subset_Sigma = thm "dprod_subset_Sigma";
+val dprod_subset_Sigma2 = thm "dprod_subset_Sigma2";
+val dsum_Sigma = thm "dsum_Sigma";
+val dsum_subset_Sigma = thm "dsum_subset_Sigma";
+val Domain_dprod = thm "Domain_dprod";
+val Domain_dsum = thm "Domain_dsum";
+*}
+
 end