src/HOL/Library/Nat_Infinity.thy
changeset 43930 cb7914f6e9b3
parent 43929 61d432e51aff
parent 43926 3264fbfd87d6
child 43931 c92df8144681
--- a/src/HOL/Library/Nat_Infinity.thy	Wed Jul 20 12:23:20 2011 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,551 +0,0 @@
-(*  Title:      HOL/Library/Nat_Infinity.thy
-    Author:     David von Oheimb, TU Muenchen;  Florian Haftmann, TU Muenchen
-    Contributions: David Trachtenherz, TU Muenchen
-*)
-
-header {* Natural numbers with infinity *}
-
-theory Nat_Infinity
-imports Main
-begin
-
-subsection {* Type definition *}
-
-text {*
-  We extend the standard natural numbers by a special value indicating
-  infinity.
-*}
-
-datatype inat = Fin nat | Infty
-
-notation (xsymbols)
-  Infty  ("\<infinity>")
-
-notation (HTML output)
-  Infty  ("\<infinity>")
-
-
-lemma not_Infty_eq[iff]: "(x ~= Infty) = (EX i. x = Fin i)"
-by (cases x) auto
-
-lemma not_Fin_eq [iff]: "(ALL y. x ~= Fin y) = (x = Infty)"
-by (cases x) auto
-
-
-primrec the_Fin :: "inat \<Rightarrow> nat"
-where "the_Fin (Fin n) = n"
-
-
-subsection {* Constructors and numbers *}
-
-instantiation inat :: "{zero, one, number}"
-begin
-
-definition
-  "0 = Fin 0"
-
-definition
-  [code_unfold]: "1 = Fin 1"
-
-definition
-  [code_unfold, code del]: "number_of k = Fin (number_of k)"
-
-instance ..
-
-end
-
-definition iSuc :: "inat \<Rightarrow> inat" where
-  "iSuc i = (case i of Fin n \<Rightarrow> Fin (Suc n) | \<infinity> \<Rightarrow> \<infinity>)"
-
-lemma Fin_0: "Fin 0 = 0"
-  by (simp add: zero_inat_def)
-
-lemma Fin_1: "Fin 1 = 1"
-  by (simp add: one_inat_def)
-
-lemma Fin_number: "Fin (number_of k) = number_of k"
-  by (simp add: number_of_inat_def)
-
-lemma one_iSuc: "1 = iSuc 0"
-  by (simp add: zero_inat_def one_inat_def iSuc_def)
-
-lemma Infty_ne_i0 [simp]: "\<infinity> \<noteq> 0"
-  by (simp add: zero_inat_def)
-
-lemma i0_ne_Infty [simp]: "0 \<noteq> \<infinity>"
-  by (simp add: zero_inat_def)
-
-lemma zero_inat_eq [simp]:
-  "number_of k = (0\<Colon>inat) \<longleftrightarrow> number_of k = (0\<Colon>nat)"
-  "(0\<Colon>inat) = number_of k \<longleftrightarrow> number_of k = (0\<Colon>nat)"
-  unfolding zero_inat_def number_of_inat_def by simp_all
-
-lemma one_inat_eq [simp]:
-  "number_of k = (1\<Colon>inat) \<longleftrightarrow> number_of k = (1\<Colon>nat)"
-  "(1\<Colon>inat) = number_of k \<longleftrightarrow> number_of k = (1\<Colon>nat)"
-  unfolding one_inat_def number_of_inat_def by simp_all
-
-lemma zero_one_inat_neq [simp]:
-  "\<not> 0 = (1\<Colon>inat)"
-  "\<not> 1 = (0\<Colon>inat)"
-  unfolding zero_inat_def one_inat_def by simp_all
-
-lemma Infty_ne_i1 [simp]: "\<infinity> \<noteq> 1"
-  by (simp add: one_inat_def)
-
-lemma i1_ne_Infty [simp]: "1 \<noteq> \<infinity>"
-  by (simp add: one_inat_def)
-
-lemma Infty_ne_number [simp]: "\<infinity> \<noteq> number_of k"
-  by (simp add: number_of_inat_def)
-
-lemma number_ne_Infty [simp]: "number_of k \<noteq> \<infinity>"
-  by (simp add: number_of_inat_def)
-
-lemma iSuc_Fin: "iSuc (Fin n) = Fin (Suc n)"
-  by (simp add: iSuc_def)
-
-lemma iSuc_number_of: "iSuc (number_of k) = Fin (Suc (number_of k))"
-  by (simp add: iSuc_Fin number_of_inat_def)
-
-lemma iSuc_Infty [simp]: "iSuc \<infinity> = \<infinity>"
-  by (simp add: iSuc_def)
-
-lemma iSuc_ne_0 [simp]: "iSuc n \<noteq> 0"
-  by (simp add: iSuc_def zero_inat_def split: inat.splits)
-
-lemma zero_ne_iSuc [simp]: "0 \<noteq> iSuc n"
-  by (rule iSuc_ne_0 [symmetric])
-
-lemma iSuc_inject [simp]: "iSuc m = iSuc n \<longleftrightarrow> m = n"
-  by (simp add: iSuc_def split: inat.splits)
-
-lemma number_of_inat_inject [simp]:
-  "(number_of k \<Colon> inat) = number_of l \<longleftrightarrow> (number_of k \<Colon> nat) = number_of l"
-  by (simp add: number_of_inat_def)
-
-
-subsection {* Addition *}
-
-instantiation inat :: comm_monoid_add
-begin
-
-definition [nitpick_simp]:
-  "m + n = (case m of \<infinity> \<Rightarrow> \<infinity> | Fin m \<Rightarrow> (case n of \<infinity> \<Rightarrow> \<infinity> | Fin n \<Rightarrow> Fin (m + n)))"
-
-lemma plus_inat_simps [simp, code]:
-  "Fin m + Fin n = Fin (m + n)"
-  "\<infinity> + q = \<infinity>"
-  "q + \<infinity> = \<infinity>"
-  by (simp_all add: plus_inat_def split: inat.splits)
-
-instance proof
-  fix n m q :: inat
-  show "n + m + q = n + (m + q)"
-    by (cases n, auto, cases m, auto, cases q, auto)
-  show "n + m = m + n"
-    by (cases n, auto, cases m, auto)
-  show "0 + n = n"
-    by (cases n) (simp_all add: zero_inat_def)
-qed
-
-end
-
-lemma plus_inat_0 [simp]:
-  "0 + (q\<Colon>inat) = q"
-  "(q\<Colon>inat) + 0 = q"
-  by (simp_all add: plus_inat_def zero_inat_def split: inat.splits)
-
-lemma plus_inat_number [simp]:
-  "(number_of k \<Colon> inat) + number_of l = (if k < Int.Pls then number_of l
-    else if l < Int.Pls then number_of k else number_of (k + l))"
-  unfolding number_of_inat_def plus_inat_simps nat_arith(1) if_distrib [symmetric, of _ Fin] ..
-
-lemma iSuc_number [simp]:
-  "iSuc (number_of k) = (if neg (number_of k \<Colon> int) then 1 else number_of (Int.succ k))"
-  unfolding iSuc_number_of
-  unfolding one_inat_def number_of_inat_def Suc_nat_number_of if_distrib [symmetric] ..
-
-lemma iSuc_plus_1:
-  "iSuc n = n + 1"
-  by (cases n) (simp_all add: iSuc_Fin one_inat_def)
-  
-lemma plus_1_iSuc:
-  "1 + q = iSuc q"
-  "q + 1 = iSuc q"
-by (simp_all add: iSuc_plus_1 add_ac)
-
-lemma iadd_Suc: "iSuc m + n = iSuc (m + n)"
-by (simp_all add: iSuc_plus_1 add_ac)
-
-lemma iadd_Suc_right: "m + iSuc n = iSuc (m + n)"
-by (simp only: add_commute[of m] iadd_Suc)
-
-lemma iadd_is_0: "(m + n = (0::inat)) = (m = 0 \<and> n = 0)"
-by (cases m, cases n, simp_all add: zero_inat_def)
-
-subsection {* Multiplication *}
-
-instantiation inat :: comm_semiring_1
-begin
-
-definition times_inat_def [nitpick_simp]:
-  "m * n = (case m of \<infinity> \<Rightarrow> if n = 0 then 0 else \<infinity> | Fin m \<Rightarrow>
-    (case n of \<infinity> \<Rightarrow> if m = 0 then 0 else \<infinity> | Fin n \<Rightarrow> Fin (m * n)))"
-
-lemma times_inat_simps [simp, code]:
-  "Fin m * Fin n = Fin (m * n)"
-  "\<infinity> * \<infinity> = \<infinity>"
-  "\<infinity> * Fin n = (if n = 0 then 0 else \<infinity>)"
-  "Fin m * \<infinity> = (if m = 0 then 0 else \<infinity>)"
-  unfolding times_inat_def zero_inat_def
-  by (simp_all split: inat.split)
-
-instance proof
-  fix a b c :: inat
-  show "(a * b) * c = a * (b * c)"
-    unfolding times_inat_def zero_inat_def
-    by (simp split: inat.split)
-  show "a * b = b * a"
-    unfolding times_inat_def zero_inat_def
-    by (simp split: inat.split)
-  show "1 * a = a"
-    unfolding times_inat_def zero_inat_def one_inat_def
-    by (simp split: inat.split)
-  show "(a + b) * c = a * c + b * c"
-    unfolding times_inat_def zero_inat_def
-    by (simp split: inat.split add: left_distrib)
-  show "0 * a = 0"
-    unfolding times_inat_def zero_inat_def
-    by (simp split: inat.split)
-  show "a * 0 = 0"
-    unfolding times_inat_def zero_inat_def
-    by (simp split: inat.split)
-  show "(0::inat) \<noteq> 1"
-    unfolding zero_inat_def one_inat_def
-    by simp
-qed
-
-end
-
-lemma mult_iSuc: "iSuc m * n = n + m * n"
-  unfolding iSuc_plus_1 by (simp add: algebra_simps)
-
-lemma mult_iSuc_right: "m * iSuc n = m + m * n"
-  unfolding iSuc_plus_1 by (simp add: algebra_simps)
-
-lemma of_nat_eq_Fin: "of_nat n = Fin n"
-  apply (induct n)
-  apply (simp add: Fin_0)
-  apply (simp add: plus_1_iSuc iSuc_Fin)
-  done
-
-instance inat :: number_semiring
-proof
-  fix n show "number_of (int n) = (of_nat n :: inat)"
-    unfolding number_of_inat_def number_of_int of_nat_id of_nat_eq_Fin ..
-qed
-
-instance inat :: semiring_char_0 proof
-  have "inj Fin" by (rule injI) simp
-  then show "inj (\<lambda>n. of_nat n :: inat)" by (simp add: of_nat_eq_Fin)
-qed
-
-lemma imult_is_0[simp]: "((m::inat) * n = 0) = (m = 0 \<or> n = 0)"
-by(auto simp add: times_inat_def zero_inat_def split: inat.split)
-
-lemma imult_is_Infty: "((a::inat) * b = \<infinity>) = (a = \<infinity> \<and> b \<noteq> 0 \<or> b = \<infinity> \<and> a \<noteq> 0)"
-by(auto simp add: times_inat_def zero_inat_def split: inat.split)
-
-
-subsection {* Subtraction *}
-
-instantiation inat :: minus
-begin
-
-definition diff_inat_def:
-"a - b = (case a of (Fin x) \<Rightarrow> (case b of (Fin y) \<Rightarrow> Fin (x - y) | \<infinity> \<Rightarrow> 0)
-          | \<infinity> \<Rightarrow> \<infinity>)"
-
-instance ..
-
-end
-
-lemma idiff_Fin_Fin[simp,code]: "Fin a - Fin b = Fin (a - b)"
-by(simp add: diff_inat_def)
-
-lemma idiff_Infty[simp,code]: "\<infinity> - n = \<infinity>"
-by(simp add: diff_inat_def)
-
-lemma idiff_Infty_right[simp,code]: "Fin a - \<infinity> = 0"
-by(simp add: diff_inat_def)
-
-lemma idiff_0[simp]: "(0::inat) - n = 0"
-by (cases n, simp_all add: zero_inat_def)
-
-lemmas idiff_Fin_0[simp] = idiff_0[unfolded zero_inat_def]
-
-lemma idiff_0_right[simp]: "(n::inat) - 0 = n"
-by (cases n) (simp_all add: zero_inat_def)
-
-lemmas idiff_Fin_0_right[simp] = idiff_0_right[unfolded zero_inat_def]
-
-lemma idiff_self[simp]: "n \<noteq> \<infinity> \<Longrightarrow> (n::inat) - n = 0"
-by(auto simp: zero_inat_def)
-
-lemma iSuc_minus_iSuc [simp]: "iSuc n - iSuc m = n - m"
-by(simp add: iSuc_def split: inat.split)
-
-lemma iSuc_minus_1 [simp]: "iSuc n - 1 = n"
-by(simp add: one_inat_def iSuc_Fin[symmetric] zero_inat_def[symmetric])
-
-(*lemmas idiff_self_eq_0_Fin = idiff_self_eq_0[unfolded zero_inat_def]*)
-
-
-subsection {* Ordering *}
-
-instantiation inat :: linordered_ab_semigroup_add
-begin
-
-definition [nitpick_simp]:
-  "m \<le> n = (case n of Fin n1 \<Rightarrow> (case m of Fin m1 \<Rightarrow> m1 \<le> n1 | \<infinity> \<Rightarrow> False)
-    | \<infinity> \<Rightarrow> True)"
-
-definition [nitpick_simp]:
-  "m < n = (case m of Fin m1 \<Rightarrow> (case n of Fin n1 \<Rightarrow> m1 < n1 | \<infinity> \<Rightarrow> True)
-    | \<infinity> \<Rightarrow> False)"
-
-lemma inat_ord_simps [simp]:
-  "Fin m \<le> Fin n \<longleftrightarrow> m \<le> n"
-  "Fin m < Fin n \<longleftrightarrow> m < n"
-  "q \<le> \<infinity>"
-  "q < \<infinity> \<longleftrightarrow> q \<noteq> \<infinity>"
-  "\<infinity> \<le> q \<longleftrightarrow> q = \<infinity>"
-  "\<infinity> < q \<longleftrightarrow> False"
-  by (simp_all add: less_eq_inat_def less_inat_def split: inat.splits)
-
-lemma inat_ord_code [code]:
-  "Fin m \<le> Fin n \<longleftrightarrow> m \<le> n"
-  "Fin m < Fin n \<longleftrightarrow> m < n"
-  "q \<le> \<infinity> \<longleftrightarrow> True"
-  "Fin m < \<infinity> \<longleftrightarrow> True"
-  "\<infinity> \<le> Fin n \<longleftrightarrow> False"
-  "\<infinity> < q \<longleftrightarrow> False"
-  by simp_all
-
-instance by default
-  (auto simp add: less_eq_inat_def less_inat_def plus_inat_def split: inat.splits)
-
-end
-
-instance inat :: ordered_comm_semiring
-proof
-  fix a b c :: inat
-  assume "a \<le> b" and "0 \<le> c"
-  thus "c * a \<le> c * b"
-    unfolding times_inat_def less_eq_inat_def zero_inat_def
-    by (simp split: inat.splits)
-qed
-
-lemma inat_ord_number [simp]:
-  "(number_of m \<Colon> inat) \<le> number_of n \<longleftrightarrow> (number_of m \<Colon> nat) \<le> number_of n"
-  "(number_of m \<Colon> inat) < number_of n \<longleftrightarrow> (number_of m \<Colon> nat) < number_of n"
-  by (simp_all add: number_of_inat_def)
-
-lemma i0_lb [simp]: "(0\<Colon>inat) \<le> n"
-  by (simp add: zero_inat_def less_eq_inat_def split: inat.splits)
-
-lemma ile0_eq [simp]: "n \<le> (0\<Colon>inat) \<longleftrightarrow> n = 0"
-by (simp add: zero_inat_def less_eq_inat_def split: inat.splits)
-
-lemma Infty_ileE [elim!]: "\<infinity> \<le> Fin m \<Longrightarrow> R"
-  by (simp add: zero_inat_def less_eq_inat_def split: inat.splits)
-
-lemma Infty_ilessE [elim!]: "\<infinity> < Fin m \<Longrightarrow> R"
-  by simp
-
-lemma not_iless0 [simp]: "\<not> n < (0\<Colon>inat)"
-  by (simp add: zero_inat_def less_inat_def split: inat.splits)
-
-lemma i0_less [simp]: "(0\<Colon>inat) < n \<longleftrightarrow> n \<noteq> 0"
-by (simp add: zero_inat_def less_inat_def split: inat.splits)
-
-lemma iSuc_ile_mono [simp]: "iSuc n \<le> iSuc m \<longleftrightarrow> n \<le> m"
-  by (simp add: iSuc_def less_eq_inat_def split: inat.splits)
- 
-lemma iSuc_mono [simp]: "iSuc n < iSuc m \<longleftrightarrow> n < m"
-  by (simp add: iSuc_def less_inat_def split: inat.splits)
-
-lemma ile_iSuc [simp]: "n \<le> iSuc n"
-  by (simp add: iSuc_def less_eq_inat_def split: inat.splits)
-
-lemma not_iSuc_ilei0 [simp]: "\<not> iSuc n \<le> 0"
-  by (simp add: zero_inat_def iSuc_def less_eq_inat_def split: inat.splits)
-
-lemma i0_iless_iSuc [simp]: "0 < iSuc n"
-  by (simp add: zero_inat_def iSuc_def less_inat_def split: inat.splits)
-
-lemma iless_iSuc0[simp]: "(n < iSuc 0) = (n = 0)"
-by (simp add: zero_inat_def iSuc_def less_inat_def split: inat.split)
-
-lemma ileI1: "m < n \<Longrightarrow> iSuc m \<le> n"
-  by (simp add: iSuc_def less_eq_inat_def less_inat_def split: inat.splits)
-
-lemma Suc_ile_eq: "Fin (Suc m) \<le> n \<longleftrightarrow> Fin m < n"
-  by (cases n) auto
-
-lemma iless_Suc_eq [simp]: "Fin m < iSuc n \<longleftrightarrow> Fin m \<le> n"
-  by (auto simp add: iSuc_def less_inat_def split: inat.splits)
-
-lemma imult_Infty: "(0::inat) < n \<Longrightarrow> \<infinity> * n = \<infinity>"
-by (simp add: zero_inat_def less_inat_def split: inat.splits)
-
-lemma imult_Infty_right: "(0::inat) < n \<Longrightarrow> n * \<infinity> = \<infinity>"
-by (simp add: zero_inat_def less_inat_def split: inat.splits)
-
-lemma inat_0_less_mult_iff: "(0 < (m::inat) * n) = (0 < m \<and> 0 < n)"
-by (simp only: i0_less imult_is_0, simp)
-
-lemma mono_iSuc: "mono iSuc"
-by(simp add: mono_def)
-
-
-lemma min_inat_simps [simp]:
-  "min (Fin m) (Fin n) = Fin (min m n)"
-  "min q 0 = 0"
-  "min 0 q = 0"
-  "min q \<infinity> = q"
-  "min \<infinity> q = q"
-  by (auto simp add: min_def)
-
-lemma max_inat_simps [simp]:
-  "max (Fin m) (Fin n) = Fin (max m n)"
-  "max q 0 = q"
-  "max 0 q = q"
-  "max q \<infinity> = \<infinity>"
-  "max \<infinity> q = \<infinity>"
-  by (simp_all add: max_def)
-
-lemma Fin_ile: "n \<le> Fin m \<Longrightarrow> \<exists>k. n = Fin k"
-  by (cases n) simp_all
-
-lemma Fin_iless: "n < Fin m \<Longrightarrow> \<exists>k. n = Fin k"
-  by (cases n) simp_all
-
-lemma chain_incr: "\<forall>i. \<exists>j. Y i < Y j ==> \<exists>j. Fin k < Y j"
-apply (induct_tac k)
- apply (simp (no_asm) only: Fin_0)
- apply (fast intro: le_less_trans [OF i0_lb])
-apply (erule exE)
-apply (drule spec)
-apply (erule exE)
-apply (drule ileI1)
-apply (rule iSuc_Fin [THEN subst])
-apply (rule exI)
-apply (erule (1) le_less_trans)
-done
-
-instantiation inat :: "{bot, top}"
-begin
-
-definition bot_inat :: inat where
-  "bot_inat = 0"
-
-definition top_inat :: inat where
-  "top_inat = \<infinity>"
-
-instance proof
-qed (simp_all add: bot_inat_def top_inat_def)
-
-end
-
-lemma finite_Fin_bounded:
-  assumes le_fin: "\<And>y. y \<in> A \<Longrightarrow> y \<le> Fin n"
-  shows "finite A"
-proof (rule finite_subset)
-  show "finite (Fin ` {..n})" by blast
-
-  have "A \<subseteq> {..Fin n}" using le_fin by fastsimp
-  also have "\<dots> \<subseteq> Fin ` {..n}"
-    by (rule subsetI) (case_tac x, auto)
-  finally show "A \<subseteq> Fin ` {..n}" .
-qed
-
-
-subsection {* Well-ordering *}
-
-lemma less_FinE:
-  "[| n < Fin m; !!k. n = Fin k ==> k < m ==> P |] ==> P"
-by (induct n) auto
-
-lemma less_InftyE:
-  "[| n < Infty; !!k. n = Fin k ==> P |] ==> P"
-by (induct n) auto
-
-lemma inat_less_induct:
-  assumes prem: "!!n. \<forall>m::inat. m < n --> P m ==> P n" shows "P n"
-proof -
-  have P_Fin: "!!k. P (Fin k)"
-    apply (rule nat_less_induct)
-    apply (rule prem, clarify)
-    apply (erule less_FinE, simp)
-    done
-  show ?thesis
-  proof (induct n)
-    fix nat
-    show "P (Fin nat)" by (rule P_Fin)
-  next
-    show "P Infty"
-      apply (rule prem, clarify)
-      apply (erule less_InftyE)
-      apply (simp add: P_Fin)
-      done
-  qed
-qed
-
-instance inat :: wellorder
-proof
-  fix P and n
-  assume hyp: "(\<And>n\<Colon>inat. (\<And>m\<Colon>inat. m < n \<Longrightarrow> P m) \<Longrightarrow> P n)"
-  show "P n" by (blast intro: inat_less_induct hyp)
-qed
-
-subsection {* Complete Lattice *}
-
-instantiation inat :: complete_lattice
-begin
-
-definition inf_inat :: "inat \<Rightarrow> inat \<Rightarrow> inat" where
-  "inf_inat \<equiv> min"
-
-definition sup_inat :: "inat \<Rightarrow> inat \<Rightarrow> inat" where
-  "sup_inat \<equiv> max"
-
-definition Inf_inat :: "inat set \<Rightarrow> inat" where
-  "Inf_inat A \<equiv> if A = {} then \<infinity> else (LEAST x. x \<in> A)"
-
-definition Sup_inat :: "inat set \<Rightarrow> inat" where
-  "Sup_inat A \<equiv> if A = {} then 0
-    else if finite A then Max A
-                     else \<infinity>"
-instance proof
-  fix x :: "inat" and A :: "inat set"
-  { assume "x \<in> A" then show "Inf A \<le> x"
-      unfolding Inf_inat_def by (auto intro: Least_le) }
-  { assume "\<And>y. y \<in> A \<Longrightarrow> x \<le> y" then show "x \<le> Inf A"
-      unfolding Inf_inat_def
-      by (cases "A = {}") (auto intro: LeastI2_ex) }
-  { assume "x \<in> A" then show "x \<le> Sup A"
-      unfolding Sup_inat_def by (cases "finite A") auto }
-  { assume "\<And>y. y \<in> A \<Longrightarrow> y \<le> x" then show "Sup A \<le> x"
-      unfolding Sup_inat_def using finite_Fin_bounded by auto }
-qed (simp_all add: inf_inat_def sup_inat_def)
-end
-
-
-subsection {* Traditional theorem names *}
-
-lemmas inat_defs = zero_inat_def one_inat_def number_of_inat_def iSuc_def
-  plus_inat_def less_eq_inat_def less_inat_def
-
-end