--- a/src/HOL/Library/Multiset.thy Fri Jul 04 20:07:08 2014 +0200
+++ b/src/HOL/Library/Multiset.thy Fri Jul 04 20:18:47 2014 +0200
@@ -225,8 +225,8 @@
(* shorter: by (simp add: multiset_eq_iff) fastforce *)
proof
assume ?rhs then show ?lhs
- by (auto simp add: add_assoc add_commute [of "{#b#}"])
- (drule sym, simp add: add_assoc [symmetric])
+ by (auto simp add: add.assoc add.commute [of "{#b#}"])
+ (drule sym, simp add: add.assoc [symmetric])
next
assume ?lhs
show ?rhs
@@ -1494,9 +1494,9 @@
case (Suc i')
with Cons show ?thesis
apply simp
- apply (subst add_assoc)
- apply (subst add_commute [of "{#v#}" "{#x#}"])
- apply (subst add_assoc [symmetric])
+ apply (subst add.assoc)
+ apply (subst add.commute [of "{#v#}" "{#x#}"])
+ apply (subst add.assoc [symmetric])
apply simp
apply (rule mset_le_multiset_union_diff_commute)
apply (simp add: mset_le_single nth_mem_multiset_of)
@@ -1597,7 +1597,7 @@
with wf_hyp have "\<forall>M \<in> ?W. M + {#x#} \<in> ?W" by blast
moreover from add have "M0 + K \<in> ?W" by simp
ultimately have "(M0 + K) + {#x#} \<in> ?W" ..
- then show "M0 + (K + {#x#}) \<in> ?W" by (simp only: add_assoc)
+ then show "M0 + (K + {#x#}) \<in> ?W" by (simp only: add.assoc)
qed
then show "N \<in> ?W" by (simp only: N)
qed
@@ -1652,7 +1652,7 @@
apply (rule_tac x = I in exI)
apply (simp (no_asm))
apply (rule_tac x = "(K - {#a#}) + Ka" in exI)
- apply (simp (no_asm_simp) add: add_assoc [symmetric])
+ apply (simp (no_asm_simp) add: add.assoc [symmetric])
apply (drule_tac f = "\<lambda>M. M - {#a#}" and x="?S + ?T" in arg_cong)
apply (simp add: diff_union_single_conv)
apply (simp (no_asm_use) add: trans_def)
@@ -1695,7 +1695,7 @@
(I + {# x :# K. (x, a) \<in> r #}) + J') \<in> mult r")
prefer 2
apply force
-apply (simp (no_asm_use) add: add_assoc [symmetric] mult_def)
+apply (simp (no_asm_use) add: add.assoc [symmetric] mult_def)
apply (erule trancl_trans)
apply (rule r_into_trancl)
apply (simp add: mult1_def set_of_def)
@@ -1760,7 +1760,7 @@
apply auto
apply (rule_tac x = a in exI)
apply (rule_tac x = "C + M0" in exI)
-apply (simp add: add_assoc)
+apply (simp add: add.assoc)
done
lemma union_less_mono2: "B \<subset># D ==> C + B \<subset># C + (D::'a::order multiset)"
@@ -1771,8 +1771,8 @@
done
lemma union_less_mono1: "B \<subset># D ==> B + C \<subset># D + (C::'a::order multiset)"
-apply (subst add_commute [of B C])
-apply (subst add_commute [of D C])
+apply (subst add.commute [of B C])
+apply (subst add.commute [of D C])
apply (erule union_less_mono2)
done
@@ -1941,13 +1941,13 @@
lemmas multi_count_eq = multiset_eq_iff [symmetric]
lemma union_commute: "M + N = N + (M::'a multiset)"
- by (fact add_commute)
+ by (fact add.commute)
lemma union_assoc: "(M + N) + K = M + (N + (K::'a multiset))"
- by (fact add_assoc)
+ by (fact add.assoc)
lemma union_lcomm: "M + (N + K) = N + (M + (K::'a multiset))"
- by (fact add_left_commute)
+ by (fact add.left_commute)
lemmas union_ac = union_assoc union_commute union_lcomm