--- a/src/HOL/Old_Number_Theory/Legacy_GCD.thy Fri Jul 04 20:07:08 2014 +0200
+++ b/src/HOL/Old_Number_Theory/Legacy_GCD.thy Fri Jul 04 20:18:47 2014 +0200
@@ -161,7 +161,7 @@
apply (rule_tac n = k in relprime_dvd_mult)
apply (simp add: gcd_assoc)
apply (simp add: gcd_commute)
- apply (simp_all add: mult_commute)
+ apply (simp_all add: mult.commute)
done
@@ -173,19 +173,19 @@
lemma gcd_add2 [simp, algebra]: "gcd m (m + n) = gcd m n"
proof -
have "gcd m (m + n) = gcd (m + n) m" by (rule gcd_commute)
- also have "... = gcd (n + m) m" by (simp add: add_commute)
+ also have "... = gcd (n + m) m" by (simp add: add.commute)
also have "... = gcd n m" by simp
also have "... = gcd m n" by (rule gcd_commute)
finally show ?thesis .
qed
lemma gcd_add2' [simp, algebra]: "gcd m (n + m) = gcd m n"
- apply (subst add_commute)
+ apply (subst add.commute)
apply (rule gcd_add2)
done
lemma gcd_add_mult[algebra]: "gcd m (k * m + n) = gcd m n"
- by (induct k) (simp_all add: add_assoc)
+ by (induct k) (simp_all add: add.assoc)
lemma gcd_dvd_prod: "gcd m n dvd m * n"
using mult_dvd_mono [of 1] by auto
@@ -351,7 +351,7 @@
hence "a * ((b - 1) * y) = d + (x*b*(b - 1) - d*b)"
by (simp only: diff_add_assoc[OF dble, of d, symmetric])
hence "a * ((b - 1) * y) = b*(x*(b - 1) - d) + d"
- by (simp only: diff_mult_distrib2 add_commute mult_ac)
+ by (simp only: diff_mult_distrib2 add.commute mult_ac)
hence ?thesis using H(1,2)
apply -
apply (rule exI[where x=d], simp)
@@ -374,7 +374,7 @@
hence "a * x * k - b * y*k = d*k \<or> b * x * k - a * y*k = d*k"
by (algebra add: diff_mult_distrib)
hence "a * (x * k) - b * (y*k) = ?g \<or> b * (x * k) - a * (y*k) = ?g"
- by (simp add: k mult_assoc)
+ by (simp add: k mult.assoc)
thus ?thesis by blast
qed
@@ -392,7 +392,7 @@
qed
lemma gcd_mult_distrib: "gcd(a * c) (b * c) = c * gcd a b"
-by(simp add: gcd_mult_distrib2 mult_commute)
+by(simp add: gcd_mult_distrib2 mult.commute)
lemma gcd_bezout: "(\<exists>x y. a * x - b * y = d \<or> b * x - a * y = d) \<longleftrightarrow> gcd a b dvd d"
(is "?lhs \<longleftrightarrow> ?rhs")
@@ -405,7 +405,7 @@
hence "a * x*k - b * y*k = ?g*k \<or> b * x * k - a * y*k = ?g*k"
by (simp only: diff_mult_distrib)
hence "a * (x*k) - b * (y*k) = d \<or> b * (x * k) - a * (y*k) = d"
- by (simp add: k[symmetric] mult_assoc)
+ by (simp add: k[symmetric] mult.assoc)
hence ?lhs by blast}
moreover
{fix x y assume H: "a * x - b * y = d \<or> b * x - a * y = d"
@@ -426,7 +426,7 @@
qed
lemma gcd_mult': "gcd b (a * b) = b"
-by (simp add: mult_commute[of a b])
+by (simp add: mult.commute[of a b])
lemma gcd_add: "gcd(a + b) b = gcd a b"
"gcd(b + a) b = gcd a b" "gcd a (a + b) = gcd a b" "gcd a (b + a) = gcd a b"