src/HOL/Auth/ZhouGollmann.thy
changeset 76287 cdc14f94c754
parent 69597 ff784d5a5bfb
--- a/src/HOL/Auth/ZhouGollmann.thy	Thu Oct 13 14:49:15 2022 +0200
+++ b/src/HOL/Auth/ZhouGollmann.thy	Thu Oct 13 15:38:32 2022 +0100
@@ -32,35 +32,35 @@
 
   Nil:  "[] \<in> zg"
 
-| Fake: "[| evsf \<in> zg;  X \<in> synth (analz (spies evsf)) |]
-         ==> Says Spy B X  # evsf \<in> zg"
+| Fake: "\<lbrakk>evsf \<in> zg;  X \<in> synth (analz (spies evsf))\<rbrakk>
+         \<Longrightarrow> Says Spy B X  # evsf \<in> zg"
 
-| Reception:  "[| evsr \<in> zg; Says A B X \<in> set evsr |] ==> Gets B X # evsr \<in> zg"
+| Reception:  "\<lbrakk>evsr \<in> zg; Says A B X \<in> set evsr\<rbrakk> \<Longrightarrow> Gets B X # evsr \<in> zg"
 
   (*L is fresh for honest agents.
     We don't require K to be fresh because we don't bother to prove secrecy!
     We just assume that the protocol's objective is to deliver K fairly,
     rather than to keep M secret.*)
-| ZG1: "[| evs1 \<in> zg;  Nonce L \<notin> used evs1; C = Crypt K (Number m);
+| ZG1: "\<lbrakk>evs1 \<in> zg;  Nonce L \<notin> used evs1; C = Crypt K (Number m);
            K \<in> symKeys;
-           NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, C\<rbrace>|]
-       ==> Says A B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> # evs1 \<in> zg"
+           NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, C\<rbrace>\<rbrakk>
+       \<Longrightarrow> Says A B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> # evs1 \<in> zg"
 
   (*B must check that NRO is A's signature to learn the sender's name*)
-| ZG2: "[| evs2 \<in> zg;
+| ZG2: "\<lbrakk>evs2 \<in> zg;
            Gets B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs2;
            NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, C\<rbrace>;
-           NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, C\<rbrace>|]
-       ==> Says B A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> # evs2  \<in>  zg"
+           NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, C\<rbrace>\<rbrakk>
+       \<Longrightarrow> Says B A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> # evs2  \<in>  zg"
 
   (*A must check that NRR is B's signature to learn the sender's name;
     without spy, the matching label would be enough*)
-| ZG3: "[| evs3 \<in> zg; C = Crypt K M; K \<in> symKeys;
+| ZG3: "\<lbrakk>evs3 \<in> zg; C = Crypt K M; K \<in> symKeys;
            Says A B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs3;
            Gets A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs3;
            NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, C\<rbrace>;
-           sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>|]
-       ==> Says A TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace>
+           sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>\<rbrakk>
+       \<Longrightarrow> Says A TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace>
              # evs3 \<in> zg"
 
  (*TTP checks that sub_K is A's signature to learn who issued K, then
@@ -69,13 +69,13 @@
    give con_K to the Spy. This makes the threat model more dangerous, while 
    also allowing lemma @{text Crypt_used_imp_spies} to omit the condition
    @{term "K \<noteq> priK TTP"}. *)
-| ZG4: "[| evs4 \<in> zg; K \<in> symKeys;
+| ZG4: "\<lbrakk>evs4 \<in> zg; K \<in> symKeys;
            Gets TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace>
              \<in> set evs4;
            sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>;
            con_K = Crypt (priK TTP) \<lbrace>Number f_con, Agent A, Agent B,
-                                      Nonce L, Key K\<rbrace>|]
-       ==> Says TTP Spy con_K
+                                      Nonce L, Key K\<rbrace>\<rbrakk>
+       \<Longrightarrow> Says TTP Spy con_K
            #
            Notes TTP \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K, con_K\<rbrace>
            # evs4 \<in> zg"
@@ -90,7 +90,7 @@
 
 
 text\<open>A "possibility property": there are traces that reach the end\<close>
-lemma "[|A \<noteq> B; TTP \<noteq> A; TTP \<noteq> B; K \<in> symKeys|] ==>
+lemma "\<lbrakk>A \<noteq> B; TTP \<noteq> A; TTP \<noteq> B; K \<in> symKeys\<rbrakk> \<Longrightarrow>
      \<exists>L. \<exists>evs \<in> zg.
            Notes TTP \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K,
                Crypt (priK TTP) \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K\<rbrace>\<rbrace>
@@ -107,45 +107,45 @@
 subsection \<open>Basic Lemmas\<close>
 
 lemma Gets_imp_Says:
-     "[| Gets B X \<in> set evs; evs \<in> zg |] ==> \<exists>A. Says A B X \<in> set evs"
+     "\<lbrakk>Gets B X \<in> set evs; evs \<in> zg\<rbrakk> \<Longrightarrow> \<exists>A. Says A B X \<in> set evs"
 apply (erule rev_mp)
 apply (erule zg.induct, auto)
 done
 
 lemma Gets_imp_knows_Spy:
-     "[| Gets B X \<in> set evs; evs \<in> zg |]  ==> X \<in> spies evs"
+     "\<lbrakk>Gets B X \<in> set evs; evs \<in> zg\<rbrakk>  \<Longrightarrow> X \<in> spies evs"
 by (blast dest!: Gets_imp_Says Says_imp_knows_Spy)
 
 
 text\<open>Lets us replace proofs about \<^term>\<open>used evs\<close> by simpler proofs 
 about \<^term>\<open>parts (spies evs)\<close>.\<close>
 lemma Crypt_used_imp_spies:
-     "[| Crypt K X \<in> used evs; evs \<in> zg |]
-      ==> Crypt K X \<in> parts (spies evs)"
+     "\<lbrakk>Crypt K X \<in> used evs; evs \<in> zg\<rbrakk>
+      \<Longrightarrow> Crypt K X \<in> parts (spies evs)"
 apply (erule rev_mp)
 apply (erule zg.induct)
 apply (simp_all add: parts_insert_knows_A) 
 done
 
 lemma Notes_TTP_imp_Gets:
-     "[|Notes TTP \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K, con_K\<rbrace>
+     "\<lbrakk>Notes TTP \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K, con_K\<rbrace>
            \<in> set evs;
         sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>;
-        evs \<in> zg|]
-    ==> Gets TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs"
+        evs \<in> zg\<rbrakk>
+    \<Longrightarrow> Gets TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs"
 apply (erule rev_mp)
 apply (erule zg.induct, auto)
 done
 
 text\<open>For reasoning about C, which is encrypted in message ZG2\<close>
 lemma ZG2_msg_in_parts_spies:
-     "[|Gets B \<lbrace>F, B', L, C, X\<rbrace> \<in> set evs; evs \<in> zg|]
-      ==> C \<in> parts (spies evs)"
+     "\<lbrakk>Gets B \<lbrace>F, B', L, C, X\<rbrace> \<in> set evs; evs \<in> zg\<rbrakk>
+      \<Longrightarrow> C \<in> parts (spies evs)"
 by (blast dest: Gets_imp_Says)
 
 (*classical regularity lemma on priK*)
 lemma Spy_see_priK [simp]:
-     "evs \<in> zg ==> (Key (priK A) \<in> parts (spies evs)) = (A \<in> bad)"
+     "evs \<in> zg \<Longrightarrow> (Key (priK A) \<in> parts (spies evs)) = (A \<in> bad)"
 apply (erule zg.induct)
 apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
 done
@@ -154,7 +154,7 @@
 declare  Spy_see_priK [THEN [2] rev_iffD1, dest!]
 
 lemma Spy_analz_priK [simp]:
-     "evs \<in> zg ==> (Key (priK A) \<in> analz (spies evs)) = (A \<in> bad)"
+     "evs \<in> zg \<Longrightarrow> (Key (priK A) \<in> analz (spies evs)) = (A \<in> bad)"
 by auto 
 
 
@@ -165,10 +165,10 @@
 
 text\<open>Strong conclusion for a good agent\<close>
 lemma NRO_validity_good:
-     "[|NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, C\<rbrace>;
+     "\<lbrakk>NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, C\<rbrace>;
         NRO \<in> parts (spies evs);
-        A \<notin> bad;  evs \<in> zg |]
-     ==> Says A B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs"
+        A \<notin> bad;  evs \<in> zg\<rbrakk>
+     \<Longrightarrow> Says A B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs"
 apply clarify
 apply (erule rev_mp)
 apply (erule zg.induct)
@@ -176,18 +176,18 @@
 done
 
 lemma NRO_sender:
-     "[|Says A' B \<lbrace>n, b, l, C, Crypt (priK A) X\<rbrace> \<in> set evs; evs \<in> zg|]
-    ==> A' \<in> {A,Spy}"
+     "\<lbrakk>Says A' B \<lbrace>n, b, l, C, Crypt (priK A) X\<rbrace> \<in> set evs; evs \<in> zg\<rbrakk>
+    \<Longrightarrow> A' \<in> {A,Spy}"
 apply (erule rev_mp)  
 apply (erule zg.induct, simp_all)
 done
 
 text\<open>Holds also for \<^term>\<open>A = Spy\<close>!\<close>
 theorem NRO_validity:
-     "[|Gets B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs;
+     "\<lbrakk>Gets B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs;
         NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, C\<rbrace>;
-        A \<notin> broken;  evs \<in> zg |]
-     ==> Says A B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs"
+        A \<notin> broken;  evs \<in> zg\<rbrakk>
+     \<Longrightarrow> Says A B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs"
 apply (drule Gets_imp_Says, assumption) 
 apply clarify 
 apply (frule NRO_sender, auto)
@@ -205,10 +205,10 @@
 
 text\<open>Strong conclusion for a good agent\<close>
 lemma NRR_validity_good:
-     "[|NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, C\<rbrace>;
+     "\<lbrakk>NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, C\<rbrace>;
         NRR \<in> parts (spies evs);
-        B \<notin> bad;  evs \<in> zg |]
-     ==> Says B A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs"
+        B \<notin> bad;  evs \<in> zg\<rbrakk>
+     \<Longrightarrow> Says B A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs"
 apply clarify
 apply (erule rev_mp)
 apply (erule zg.induct) 
@@ -216,18 +216,18 @@
 done
 
 lemma NRR_sender:
-     "[|Says B' A \<lbrace>n, a, l, Crypt (priK B) X\<rbrace> \<in> set evs; evs \<in> zg|]
-    ==> B' \<in> {B,Spy}"
+     "\<lbrakk>Says B' A \<lbrace>n, a, l, Crypt (priK B) X\<rbrace> \<in> set evs; evs \<in> zg\<rbrakk>
+    \<Longrightarrow> B' \<in> {B,Spy}"
 apply (erule rev_mp)  
 apply (erule zg.induct, simp_all)
 done
 
 text\<open>Holds also for \<^term>\<open>B = Spy\<close>!\<close>
 theorem NRR_validity:
-     "[|Says B' A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs;
+     "\<lbrakk>Says B' A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs;
         NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, C\<rbrace>;
-        B \<notin> broken; evs \<in> zg|]
-    ==> Says B A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs"
+        B \<notin> broken; evs \<in> zg\<rbrakk>
+    \<Longrightarrow> Says B A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs"
 apply clarify 
 apply (frule NRR_sender, auto)
 txt\<open>We are left with the case where \<^term>\<open>B' = Spy\<close> and  \<^term>\<open>B' \<noteq> B\<close>,
@@ -243,10 +243,10 @@
 
 text\<open>Strong conclusion for a good agent\<close>
 lemma sub_K_validity_good:
-     "[|sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>;
+     "\<lbrakk>sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>;
         sub_K \<in> parts (spies evs);
-        A \<notin> bad;  evs \<in> zg |]
-     ==> Says A TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs"
+        A \<notin> bad;  evs \<in> zg\<rbrakk>
+     \<Longrightarrow> Says A TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs"
 apply clarify
 apply (erule rev_mp)
 apply (erule zg.induct)
@@ -256,18 +256,18 @@
 done
 
 lemma sub_K_sender:
-     "[|Says A' TTP \<lbrace>n, b, l, k, Crypt (priK A) X\<rbrace> \<in> set evs;  evs \<in> zg|]
-    ==> A' \<in> {A,Spy}"
+     "\<lbrakk>Says A' TTP \<lbrace>n, b, l, k, Crypt (priK A) X\<rbrace> \<in> set evs;  evs \<in> zg\<rbrakk>
+    \<Longrightarrow> A' \<in> {A,Spy}"
 apply (erule rev_mp)  
 apply (erule zg.induct, simp_all)
 done
 
 text\<open>Holds also for \<^term>\<open>A = Spy\<close>!\<close>
 theorem sub_K_validity:
-     "[|Gets TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs;
+     "\<lbrakk>Gets TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs;
         sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>;
-        A \<notin> broken;  evs \<in> zg |]
-     ==> Says A TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs"
+        A \<notin> broken;  evs \<in> zg\<rbrakk>
+     \<Longrightarrow> Says A TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs"
 apply (drule Gets_imp_Says, assumption) 
 apply clarify 
 apply (frule sub_K_sender, auto)
@@ -286,11 +286,11 @@
 that \<^term>\<open>A\<close> sent \<^term>\<open>sub_K\<close>\<close>
 
 lemma con_K_validity:
-     "[|con_K \<in> used evs;
+     "\<lbrakk>con_K \<in> used evs;
         con_K = Crypt (priK TTP)
                   \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K\<rbrace>;
-        evs \<in> zg |]
-    ==> Notes TTP \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K, con_K\<rbrace>
+        evs \<in> zg\<rbrakk>
+    \<Longrightarrow> Notes TTP \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K, con_K\<rbrace>
           \<in> set evs"
 apply clarify
 apply (erule rev_mp)
@@ -306,11 +306,11 @@
  \<^term>\<open>sub_K\<close>.  We assume that \<^term>\<open>A\<close> is not broken.  Importantly, nothing
   needs to be assumed about the form of \<^term>\<open>con_K\<close>!\<close>
 lemma Notes_TTP_imp_Says_A:
-     "[|Notes TTP \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K, con_K\<rbrace>
+     "\<lbrakk>Notes TTP \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K, con_K\<rbrace>
            \<in> set evs;
         sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>;
-        A \<notin> broken; evs \<in> zg|]
-     ==> Says A TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs"
+        A \<notin> broken; evs \<in> zg\<rbrakk>
+     \<Longrightarrow> Says A TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs"
 apply clarify
 apply (erule rev_mp)
 apply (erule zg.induct)
@@ -323,12 +323,12 @@
 text\<open>If \<^term>\<open>con_K\<close> exists, then \<^term>\<open>A\<close> sent \<^term>\<open>sub_K\<close>.  We again
    assume that \<^term>\<open>A\<close> is not broken.\<close>
 theorem B_sub_K_validity:
-     "[|con_K \<in> used evs;
+     "\<lbrakk>con_K \<in> used evs;
         con_K = Crypt (priK TTP) \<lbrace>Number f_con, Agent A, Agent B,
                                    Nonce L, Key K\<rbrace>;
         sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>;
-        A \<notin> broken; evs \<in> zg|]
-     ==> Says A TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs"
+        A \<notin> broken; evs \<in> zg\<rbrakk>
+     \<Longrightarrow> Says A TTP \<lbrace>Number f_sub, Agent B, Nonce L, Key K, sub_K\<rbrace> \<in> set evs"
 by (blast dest: con_K_validity Notes_TTP_imp_Says_A)
 
 
@@ -340,12 +340,12 @@
 
 text\<open>Strange: unicity of the label protects \<^term>\<open>A\<close>?\<close>
 lemma A_unicity: 
-     "[|NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, Crypt K M\<rbrace>;
+     "\<lbrakk>NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, Crypt K M\<rbrace>;
         NRO \<in> parts (spies evs);
         Says A B \<lbrace>Number f_nro, Agent B, Nonce L, Crypt K M', NRO'\<rbrace>
           \<in> set evs;
-        A \<notin> bad; evs \<in> zg |]
-     ==> M'=M"
+        A \<notin> bad; evs \<in> zg\<rbrakk>
+     \<Longrightarrow> M'=M"
 apply clarify
 apply (erule rev_mp)
 apply (erule rev_mp)
@@ -359,13 +359,13 @@
 text\<open>Fairness lemma: if \<^term>\<open>sub_K\<close> exists, then \<^term>\<open>A\<close> holds 
 NRR.  Relies on unicity of labels.\<close>
 lemma sub_K_implies_NRR:
-     "[| NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, Crypt K M\<rbrace>;
+     "\<lbrakk>NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, Crypt K M\<rbrace>;
          NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, Crypt K M\<rbrace>;
          sub_K \<in> parts (spies evs);
          NRO \<in> parts (spies evs);
          sub_K = Crypt (priK A) \<lbrace>Number f_sub, Agent B, Nonce L, Key K\<rbrace>;
-         A \<notin> bad;  evs \<in> zg |]
-     ==> Gets A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs"
+         A \<notin> bad;  evs \<in> zg\<rbrakk>
+     \<Longrightarrow> Gets A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs"
 apply clarify
 apply hypsubst_thin
 apply (erule rev_mp)
@@ -382,8 +382,8 @@
 
 
 lemma Crypt_used_imp_L_used:
-     "[| Crypt (priK TTP) \<lbrace>F, A, B, L, K\<rbrace> \<in> used evs; evs \<in> zg |]
-      ==> L \<in> used evs"
+     "\<lbrakk>Crypt (priK TTP) \<lbrace>F, A, B, L, K\<rbrace> \<in> used evs; evs \<in> zg\<rbrakk>
+      \<Longrightarrow> L \<in> used evs"
 apply (erule rev_mp)
 apply (erule zg.induct, auto)
 txt\<open>Fake\<close>
@@ -397,14 +397,14 @@
 then \<^term>\<open>A\<close> holds NRR.  \<^term>\<open>A\<close> must be uncompromised, but there is no
 assumption about \<^term>\<open>B\<close>.\<close>
 theorem A_fairness_NRO:
-     "[|con_K \<in> used evs;
+     "\<lbrakk>con_K \<in> used evs;
         NRO \<in> parts (spies evs);
         con_K = Crypt (priK TTP)
                       \<lbrace>Number f_con, Agent A, Agent B, Nonce L, Key K\<rbrace>;
         NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, Crypt K M\<rbrace>;
         NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, Crypt K M\<rbrace>;
-        A \<notin> bad;  evs \<in> zg |]
-    ==> Gets A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs"
+        A \<notin> bad;  evs \<in> zg\<rbrakk>
+    \<Longrightarrow> Gets A \<lbrace>Number f_nrr, Agent A, Nonce L, NRR\<rbrace> \<in> set evs"
 apply clarify
 apply (erule rev_mp)
 apply (erule rev_mp)
@@ -425,11 +425,11 @@
 text\<open>Fairness for \<^term>\<open>B\<close>: NRR exists at all, then \<^term>\<open>B\<close> holds NRO.
 \<^term>\<open>B\<close> must be uncompromised, but there is no assumption about \<^term>\<open>A\<close>.\<close>
 theorem B_fairness_NRR:
-     "[|NRR \<in> used evs;
+     "\<lbrakk>NRR \<in> used evs;
         NRR = Crypt (priK B) \<lbrace>Number f_nrr, Agent A, Nonce L, C\<rbrace>;
         NRO = Crypt (priK A) \<lbrace>Number f_nro, Agent B, Nonce L, C\<rbrace>;
-        B \<notin> bad; evs \<in> zg |]
-    ==> Gets B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs"
+        B \<notin> bad; evs \<in> zg\<rbrakk>
+    \<Longrightarrow> Gets B \<lbrace>Number f_nro, Agent B, Nonce L, C, NRO\<rbrace> \<in> set evs"
 apply clarify
 apply (erule rev_mp)
 apply (erule zg.induct)