--- a/src/HOL/BNF_Cardinal_Order_Relation.thy Tue Feb 13 14:24:50 2018 +0100
+++ b/src/HOL/BNF_Cardinal_Order_Relation.thy Thu Feb 15 12:11:00 2018 +0100
@@ -290,7 +290,7 @@
using ordLeq_iff_ordLess_Restr card_of_Well_order by blast
lemma card_of_underS:
-assumes r: "Card_order r" and a: "a : Field r"
+assumes r: "Card_order r" and a: "a \<in> Field r"
shows "|underS r a| <o r"
proof-
let ?A = "underS r a" let ?r' = "Restr r ?A"
@@ -878,8 +878,8 @@
lemma infinite_Card_order_limit:
assumes r: "Card_order r" and "\<not>finite (Field r)"
-and a: "a : Field r"
-shows "EX b : Field r. a \<noteq> b \<and> (a,b) : r"
+and a: "a \<in> Field r"
+shows "\<exists>b \<in> Field r. a \<noteq> b \<and> (a,b) \<in> r"
proof-
have "Field r \<noteq> under r a"
using assms Card_order_infinite_not_under by blast
@@ -891,7 +891,7 @@
moreover have ba: "b \<noteq> a"
using 1 r unfolding card_order_on_def well_order_on_def
linear_order_on_def partial_order_on_def preorder_on_def refl_on_def by auto
- ultimately have "(a,b) : r"
+ ultimately have "(a,b) \<in> r"
using a r unfolding card_order_on_def well_order_on_def linear_order_on_def
total_on_def by blast
thus ?thesis using 1 ba by auto
@@ -1506,7 +1506,7 @@
definition cofinal where
"cofinal A r \<equiv>
- ALL a : Field r. EX b : A. a \<noteq> b \<and> (a,b) : r"
+ \<forall>a \<in> Field r. \<exists>b \<in> A. a \<noteq> b \<and> (a,b) \<in> r"
definition regularCard where
"regularCard r \<equiv>
@@ -1521,21 +1521,21 @@
and As: "relChain r As"
and Bsub: "B \<le> (UN i : Field r. As i)"
and cardB: "|B| <o r"
-shows "EX i : Field r. B \<le> As i"
+shows "\<exists>i \<in> Field r. B \<le> As i"
proof-
let ?phi = "\<lambda>b j. j \<in> Field r \<and> b \<in> As j"
have "\<forall>b\<in>B. \<exists>j. ?phi b j" using Bsub by blast
- then obtain f where f: "!! b. b : B \<Longrightarrow> ?phi b (f b)"
+ then obtain f where f: "\<And>b. b \<in> B \<Longrightarrow> ?phi b (f b)"
using bchoice[of B ?phi] by blast
let ?K = "f ` B"
{assume 1: "\<And>i. i \<in> Field r \<Longrightarrow> \<not> B \<le> As i"
have 2: "cofinal ?K r"
unfolding cofinal_def proof auto
- fix i assume i: "i : Field r"
- with 1 obtain b where b: "b : B \<and> b \<notin> As i" by blast
+ fix i assume i: "i \<in> Field r"
+ with 1 obtain b where b: "b \<in> B \<and> b \<notin> As i" by blast
hence "i \<noteq> f b \<and> \<not> (f b,i) \<in> r"
using As f unfolding relChain_def by auto
- hence "i \<noteq> f b \<and> (i, f b) : r" using r
+ hence "i \<noteq> f b \<and> (i, f b) \<in> r" using r
unfolding card_order_on_def well_order_on_def linear_order_on_def
total_on_def using i f b by auto
with b show "\<exists>b\<in>B. i \<noteq> f b \<and> (i, f b) \<in> r" by blast
@@ -1576,11 +1576,11 @@
hence "|K| <=o r" using r' card_of_Card_order[of K] by blast
hence "|K| \<le>o |?J|" using rJ ordLeq_ordIso_trans by blast
moreover
- {have "ALL j : K. |underS ?r' j| <o ?r'"
+ {have "\<forall>j\<in>K. |underS ?r' j| <o ?r'"
using r' 1 by (auto simp: card_of_underS)
- hence "ALL j : K. |underS ?r' j| \<le>o r"
+ hence "\<forall>j\<in>K. |underS ?r' j| \<le>o r"
using r' card_of_Card_order by blast
- hence "ALL j : K. |underS ?r' j| \<le>o |?J|"
+ hence "\<forall>j\<in>K. |underS ?r' j| \<le>o |?J|"
using rJ ordLeq_ordIso_trans by blast
}
ultimately have "|?L| \<le>o |?J|"
@@ -1608,7 +1608,7 @@
and As: "relChain (cardSuc r) As"
and Bsub: "B \<le> (UN i : Field (cardSuc r). As i)"
and cardB: "|B| <=o r"
-shows "EX i : Field (cardSuc r). B \<le> As i"
+shows "\<exists>i \<in> Field (cardSuc r). B \<le> As i"
proof-
let ?r' = "cardSuc r"
have "Card_order ?r' \<and> |B| <o ?r'"