--- a/doc-src/Ref/simp.tex Fri Feb 23 16:31:18 2001 +0100
+++ b/doc-src/Ref/simp.tex Fri Feb 23 16:31:21 2001 +0100
@@ -410,7 +410,7 @@
\[
\begin{array}{l@{}r@{\quad\mapsto\quad}l}
\mbox{create formula rewrites:}& P & [P \bimp True] \\[.5ex]
-\mbox{remove negations:}& \lnot P & [P \bimp False] \\[.5ex]
+\mbox{remove negations:}& \neg P & [P \bimp False] \\[.5ex]
\mbox{create conditional rewrites:}& P\imp s\gg t & [P\Imp s\gg t] \\[.5ex]
\mbox{break up conjunctions:}&
(s@1 \gg@1 t@1) \conj (s@2 \gg@2 t@2) & [s@1 \gg@1 t@1, s@2 \gg@2 t@2]
@@ -431,7 +431,7 @@
supplies expansion rules for case splits. The simplifier is designed
for rules roughly of the kind
\[ \Var{P}(if(\Var{Q},\Var{x},\Var{y})) \bimp (\Var{Q} \imp \Var{P}(\Var{x}))
-\conj (\lnot\Var{Q} \imp \Var{P}(\Var{y}))
+\conj (\neg\Var{Q} \imp \Var{P}(\Var{y}))
\]
but is insensitive to the form of the right-hand side. Other examples
include product types, where $split ::
@@ -501,7 +501,7 @@
val red2 = \(\List{\Var{P}\bimp\Var{Q}; \Var{Q}} \Imp \Var{P}\)
val mk_rew_rules = ...
val case_splits = [ \(\Var{P}(if(\Var{Q},\Var{x},\Var{y})) \bimp\)
- \((\Var{Q} \imp \Var{P}(\Var{x})) \conj (\lnot\Var{Q} \imp \Var{P}(\Var{y}))\) ]
+ \((\Var{Q} \imp \Var{P}(\Var{x})) \conj (\neg\Var{Q} \imp \Var{P}(\Var{y}))\) ]
val norm_thms = [ (\(\Var{x}=norm(\Var{x})\),\(norm(\Var{x})=\Var{x}\)),
(\(\Var{P}\bimp{}NORM(\Var{P}\)), \(NORM(\Var{P})\bimp\Var{P}\)) ]
val subst_thms = [ \(\List{\Var{x}=\Var{y}; \Var{P}(\Var{x})}\Imp\Var{P}(\Var{y})\) ]