src/HOL/Library/Abstract_Rat.thy
changeset 36409 d323e7773aa8
parent 36349 39be26d1bc28
child 36411 4cd87067791e
--- a/src/HOL/Library/Abstract_Rat.thy	Mon Apr 26 11:34:19 2010 +0200
+++ b/src/HOL/Library/Abstract_Rat.thy	Mon Apr 26 15:37:50 2010 +0200
@@ -184,7 +184,7 @@
 
 lemma isnormNum_unique[simp]: 
   assumes na: "isnormNum x" and nb: "isnormNum y" 
-  shows "((INum x ::'a::{ring_char_0,field, division_ring_inverse_zero}) = INum y) = (x = y)" (is "?lhs = ?rhs")
+  shows "((INum x ::'a::{field_char_0, field_inverse_zero}) = INum y) = (x = y)" (is "?lhs = ?rhs")
 proof
   have "\<exists> a b a' b'. x = (a,b) \<and> y = (a',b')" by auto
   then obtain a b a' b' where xy[simp]: "x = (a,b)" "y=(a',b')" by blast
@@ -217,11 +217,11 @@
 qed
 
 
-lemma isnormNum0[simp]: "isnormNum x \<Longrightarrow> (INum x = (0::'a::{ring_char_0, field,division_ring_inverse_zero})) = (x = 0\<^sub>N)"
+lemma isnormNum0[simp]: "isnormNum x \<Longrightarrow> (INum x = (0::'a::{field_char_0, field_inverse_zero})) = (x = 0\<^sub>N)"
   unfolding INum_int(2)[symmetric]
   by (rule isnormNum_unique, simp_all)
 
-lemma of_int_div_aux: "d ~= 0 ==> ((of_int x)::'a::{field, ring_char_0}) / (of_int d) = 
+lemma of_int_div_aux: "d ~= 0 ==> ((of_int x)::'a::field_char_0) / (of_int d) = 
     of_int (x div d) + (of_int (x mod d)) / ((of_int d)::'a)"
 proof -
   assume "d ~= 0"
@@ -238,14 +238,14 @@
 qed
 
 lemma of_int_div: "(d::int) ~= 0 ==> d dvd n ==>
-    (of_int(n div d)::'a::{field, ring_char_0}) = of_int n / of_int d"
+    (of_int(n div d)::'a::field_char_0) = of_int n / of_int d"
   apply (frule of_int_div_aux [of d n, where ?'a = 'a])
   apply simp
   apply (simp add: dvd_eq_mod_eq_0)
 done
 
 
-lemma normNum[simp]: "INum (normNum x) = (INum x :: 'a::{ring_char_0,field, division_ring_inverse_zero})"
+lemma normNum[simp]: "INum (normNum x) = (INum x :: 'a::{field_char_0, field_inverse_zero})"
 proof-
   have "\<exists> a b. x = (a,b)" by auto
   then obtain a b where x[simp]: "x = (a,b)" by blast
@@ -260,7 +260,7 @@
   ultimately show ?thesis by blast
 qed
 
-lemma INum_normNum_iff: "(INum x ::'a::{field, division_ring_inverse_zero, ring_char_0}) = INum y \<longleftrightarrow> normNum x = normNum y" (is "?lhs = ?rhs")
+lemma INum_normNum_iff: "(INum x ::'a::{field_char_0, field_inverse_zero}) = INum y \<longleftrightarrow> normNum x = normNum y" (is "?lhs = ?rhs")
 proof -
   have "normNum x = normNum y \<longleftrightarrow> (INum (normNum x) :: 'a) = INum (normNum y)"
     by (simp del: normNum)
@@ -268,7 +268,7 @@
   finally show ?thesis by simp
 qed
 
-lemma Nadd[simp]: "INum (x +\<^sub>N y) = INum x + (INum y :: 'a :: {ring_char_0,division_ring_inverse_zero,field})"
+lemma Nadd[simp]: "INum (x +\<^sub>N y) = INum x + (INum y :: 'a :: {field_char_0, field_inverse_zero})"
 proof-
 let ?z = "0:: 'a"
   have " \<exists> a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto
@@ -300,7 +300,7 @@
   ultimately show ?thesis by blast
 qed
 
-lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a :: {ring_char_0,division_ring_inverse_zero,field}) "
+lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a :: {field_char_0, field_inverse_zero}) "
 proof-
   let ?z = "0::'a"
   have " \<exists> a b. x = (a,b)" " \<exists> a' b'. y = (a',b')" by auto
@@ -323,16 +323,16 @@
 lemma Nneg[simp]: "INum (~\<^sub>N x) = - (INum x ::'a:: field)"
   by (simp add: Nneg_def split_def INum_def)
 
-lemma Nsub[simp]: shows "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {ring_char_0,division_ring_inverse_zero,field})"
+lemma Nsub[simp]: shows "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {field_char_0, field_inverse_zero})"
 by (simp add: Nsub_def split_def)
 
-lemma Ninv[simp]: "INum (Ninv x) = (1::'a :: {division_ring_inverse_zero,field}) / (INum x)"
+lemma Ninv[simp]: "INum (Ninv x) = (1::'a :: field_inverse_zero) / (INum x)"
   by (simp add: Ninv_def INum_def split_def)
 
-lemma Ndiv[simp]: "INum (x \<div>\<^sub>N y) = INum x / (INum y ::'a :: {ring_char_0, division_ring_inverse_zero,field})" by (simp add: Ndiv_def)
+lemma Ndiv[simp]: "INum (x \<div>\<^sub>N y) = INum x / (INum y ::'a :: {field_char_0, field_inverse_zero})" by (simp add: Ndiv_def)
 
 lemma Nlt0_iff[simp]: assumes nx: "isnormNum x" 
-  shows "((INum x :: 'a :: {ring_char_0,division_ring_inverse_zero,linordered_field})< 0) = 0>\<^sub>N x "
+  shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})< 0) = 0>\<^sub>N x "
 proof-
   have " \<exists> a b. x = (a,b)" by simp
   then obtain a b where x[simp]:"x = (a,b)" by blast
@@ -345,7 +345,7 @@
 qed
 
 lemma Nle0_iff[simp]:assumes nx: "isnormNum x" 
-  shows "((INum x :: 'a :: {ring_char_0,division_ring_inverse_zero,linordered_field}) \<le> 0) = 0\<ge>\<^sub>N x"
+  shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \<le> 0) = 0\<ge>\<^sub>N x"
 proof-
   have " \<exists> a b. x = (a,b)" by simp
   then obtain a b where x[simp]:"x = (a,b)" by blast
@@ -357,7 +357,7 @@
   ultimately show ?thesis by blast
 qed
 
-lemma Ngt0_iff[simp]:assumes nx: "isnormNum x" shows "((INum x :: 'a :: {ring_char_0,division_ring_inverse_zero,linordered_field})> 0) = 0<\<^sub>N x"
+lemma Ngt0_iff[simp]:assumes nx: "isnormNum x" shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})> 0) = 0<\<^sub>N x"
 proof-
   have " \<exists> a b. x = (a,b)" by simp
   then obtain a b where x[simp]:"x = (a,b)" by blast
@@ -369,7 +369,7 @@
   ultimately show ?thesis by blast
 qed
 lemma Nge0_iff[simp]:assumes nx: "isnormNum x" 
-  shows "((INum x :: 'a :: {ring_char_0,division_ring_inverse_zero,linordered_field}) \<ge> 0) = 0\<le>\<^sub>N x"
+  shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \<ge> 0) = 0\<le>\<^sub>N x"
 proof-
   have " \<exists> a b. x = (a,b)" by simp
   then obtain a b where x[simp]:"x = (a,b)" by blast
@@ -382,7 +382,7 @@
 qed
 
 lemma Nlt_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y"
-  shows "((INum x :: 'a :: {ring_char_0,division_ring_inverse_zero,linordered_field}) < INum y) = (x <\<^sub>N y)"
+  shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) < INum y) = (x <\<^sub>N y)"
 proof-
   let ?z = "0::'a"
   have "((INum x ::'a) < INum y) = (INum (x -\<^sub>N y) < ?z)" using nx ny by simp
@@ -391,7 +391,7 @@
 qed
 
 lemma Nle_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y"
-  shows "((INum x :: 'a :: {ring_char_0,division_ring_inverse_zero,linordered_field})\<le> INum y) = (x \<le>\<^sub>N y)"
+  shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})\<le> INum y) = (x \<le>\<^sub>N y)"
 proof-
   have "((INum x ::'a) \<le> INum y) = (INum (x -\<^sub>N y) \<le> (0::'a))" using nx ny by simp
   also have "\<dots> = (0\<ge>\<^sub>N (x -\<^sub>N y))" using Nle0_iff[OF Nsub_normN[OF ny]] by simp
@@ -399,7 +399,7 @@
 qed
 
 lemma Nadd_commute:
-  assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})"
+  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   shows "x +\<^sub>N y = y +\<^sub>N x"
 proof-
   have n: "isnormNum (x +\<^sub>N y)" "isnormNum (y +\<^sub>N x)" by simp_all
@@ -408,7 +408,7 @@
 qed
 
 lemma [simp]:
-  assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})"
+  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   shows "(0, b) +\<^sub>N y = normNum y"
     and "(a, 0) +\<^sub>N y = normNum y" 
     and "x +\<^sub>N (0, b) = normNum x"
@@ -420,7 +420,7 @@
   done
 
 lemma normNum_nilpotent_aux[simp]:
-  assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})"
+  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   assumes nx: "isnormNum x" 
   shows "normNum x = x"
 proof-
@@ -432,7 +432,7 @@
 qed
 
 lemma normNum_nilpotent[simp]:
-  assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})"
+  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   shows "normNum (normNum x) = normNum x"
   by simp
 
@@ -440,11 +440,11 @@
   by (simp_all add: normNum_def)
 
 lemma normNum_Nadd:
-  assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})"
+  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   shows "normNum (x +\<^sub>N y) = x +\<^sub>N y" by simp
 
 lemma Nadd_normNum1[simp]:
-  assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})"
+  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   shows "normNum x +\<^sub>N y = x +\<^sub>N y"
 proof-
   have n: "isnormNum (normNum x +\<^sub>N y)" "isnormNum (x +\<^sub>N y)" by simp_all
@@ -454,7 +454,7 @@
 qed
 
 lemma Nadd_normNum2[simp]:
-  assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})"
+  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   shows "x +\<^sub>N normNum y = x +\<^sub>N y"
 proof-
   have n: "isnormNum (x +\<^sub>N normNum y)" "isnormNum (x +\<^sub>N y)" by simp_all
@@ -464,7 +464,7 @@
 qed
 
 lemma Nadd_assoc:
-  assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})"
+  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   shows "x +\<^sub>N y +\<^sub>N z = x +\<^sub>N (y +\<^sub>N z)"
 proof-
   have n: "isnormNum (x +\<^sub>N y +\<^sub>N z)" "isnormNum (x +\<^sub>N (y +\<^sub>N z))" by simp_all
@@ -476,7 +476,7 @@
   by (simp add: Nmul_def split_def Let_def gcd_commute_int mult_commute)
 
 lemma Nmul_assoc:
-  assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})"
+  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   assumes nx: "isnormNum x" and ny:"isnormNum y" and nz:"isnormNum z"
   shows "x *\<^sub>N y *\<^sub>N z = x *\<^sub>N (y *\<^sub>N z)"
 proof-
@@ -487,7 +487,7 @@
 qed
 
 lemma Nsub0:
-  assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})"
+  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   assumes x: "isnormNum x" and y:"isnormNum y" shows "(x -\<^sub>N y = 0\<^sub>N) = (x = y)"
 proof-
   { fix h :: 'a
@@ -502,7 +502,7 @@
   by (simp_all add: Nmul_def Let_def split_def)
 
 lemma Nmul_eq0[simp]:
-  assumes "SORT_CONSTRAINT('a::{ring_char_0,division_ring_inverse_zero,field})"
+  assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
   assumes nx:"isnormNum x" and ny: "isnormNum y"
   shows "(x*\<^sub>N y = 0\<^sub>N) = (x = 0\<^sub>N \<or> y = 0\<^sub>N)"
 proof-