src/HOL/Algebra/Summation.thy
changeset 13936 d3671b878828
parent 13935 4822d9597d1e
child 13937 e9d57517c9b1
--- a/src/HOL/Algebra/Summation.thy	Tue Apr 29 12:36:49 2003 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,500 +0,0 @@
-(*  Title:      Summation Operator for Abelian Groups
-    ID:         $Id$
-    Author:     Clemens Ballarin, started 19 November 2002
-
-This file is largely based on HOL/Finite_Set.thy.
-*)
-
-header {* Summation Operator *}
-
-theory Summation = Group:
-
-(* Instantiation of LC from Finite_Set.thy is not possible,
-   because here we have explicit typing rules like x : carrier G.
-   We introduce an explicit argument for the domain D *)
-
-consts
-  foldSetD :: "['a set, 'b => 'a => 'a, 'a] => ('b set * 'a) set"
-
-inductive "foldSetD D f e"
-  intros
-    emptyI [intro]: "e : D ==> ({}, e) : foldSetD D f e"
-    insertI [intro]: "[| x ~: A; f x y : D; (A, y) : foldSetD D f e |] ==>
-                      (insert x A, f x y) : foldSetD D f e"
-
-inductive_cases empty_foldSetDE [elim!]: "({}, x) : foldSetD D f e"
-
-constdefs
-  foldD :: "['a set, 'b => 'a => 'a, 'a, 'b set] => 'a"
-  "foldD D f e A == THE x. (A, x) : foldSetD D f e"
-
-lemma foldSetD_closed:
-  "[| (A, z) : foldSetD D f e ; e : D; !!x y. [| x : A; y : D |] ==> f x y : D 
-      |] ==> z : D";
-  by (erule foldSetD.elims) auto
-
-lemma Diff1_foldSetD:
-  "[| (A - {x}, y) : foldSetD D f e; x : A; f x y : D |] ==>
-   (A, f x y) : foldSetD D f e"
-  apply (erule insert_Diff [THEN subst], rule foldSetD.intros)
-   apply auto
-  done
-
-lemma foldSetD_imp_finite [simp]: "(A, x) : foldSetD D f e ==> finite A"
-  by (induct set: foldSetD) auto
-
-lemma finite_imp_foldSetD:
-  "[| finite A; e : D; !!x y. [| x : A; y : D |] ==> f x y : D |] ==>
-   EX x. (A, x) : foldSetD D f e"
-proof (induct set: Finites)
-  case empty then show ?case by auto
-next
-  case (insert F x)
-  then obtain y where y: "(F, y) : foldSetD D f e" by auto
-  with insert have "y : D" by (auto dest: foldSetD_closed)
-  with y and insert have "(insert x F, f x y) : foldSetD D f e"
-    by (intro foldSetD.intros) auto
-  then show ?case ..
-qed
-
-subsection {* Left-commutative operations *}
-
-locale LCD =
-  fixes B :: "'b set"
-  and D :: "'a set"
-  and f :: "'b => 'a => 'a"    (infixl "\<cdot>" 70)
-  assumes left_commute: "[| x : B; y : B; z : D |] ==> x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)"
-  and f_closed [simp, intro!]: "!!x y. [| x : B; y : D |] ==> f x y : D"
-
-lemma (in LCD) foldSetD_closed [dest]:
-  "(A, z) : foldSetD D f e ==> z : D";
-  by (erule foldSetD.elims) auto
-
-lemma (in LCD) Diff1_foldSetD:
-  "[| (A - {x}, y) : foldSetD D f e; x : A; A <= B |] ==>
-   (A, f x y) : foldSetD D f e"
-  apply (subgoal_tac "x : B")
-  prefer 2 apply fast
-  apply (erule insert_Diff [THEN subst], rule foldSetD.intros)
-   apply auto
-  done
-
-lemma (in LCD) foldSetD_imp_finite [simp]:
-  "(A, x) : foldSetD D f e ==> finite A"
-  by (induct set: foldSetD) auto
-
-lemma (in LCD) finite_imp_foldSetD:
-  "[| finite A; A <= B; e : D |] ==> EX x. (A, x) : foldSetD D f e"
-proof (induct set: Finites)
-  case empty then show ?case by auto
-next
-  case (insert F x)
-  then obtain y where y: "(F, y) : foldSetD D f e" by auto
-  with insert have "y : D" by auto
-  with y and insert have "(insert x F, f x y) : foldSetD D f e"
-    by (intro foldSetD.intros) auto
-  then show ?case ..
-qed
-
-lemma (in LCD) foldSetD_determ_aux:
-  "e : D ==> ALL A x. A <= B & card A < n --> (A, x) : foldSetD D f e -->
-    (ALL y. (A, y) : foldSetD D f e --> y = x)"
-  apply (induct n)
-   apply (auto simp add: less_Suc_eq)
-  apply (erule foldSetD.cases)
-   apply blast
-  apply (erule foldSetD.cases)
-   apply blast
-  apply clarify
-  txt {* force simplification of @{text "card A < card (insert ...)"}. *}
-  apply (erule rev_mp)
-  apply (simp add: less_Suc_eq_le)
-  apply (rule impI)
-  apply (rename_tac Aa xa ya Ab xb yb, case_tac "xa = xb")
-   apply (subgoal_tac "Aa = Ab")
-    prefer 2 apply (blast elim!: equalityE)
-   apply blast
-  txt {* case @{prop "xa \<notin> xb"}. *}
-  apply (subgoal_tac "Aa - {xb} = Ab - {xa} & xb : Aa & xa : Ab")
-   prefer 2 apply (blast elim!: equalityE)
-  apply clarify
-  apply (subgoal_tac "Aa = insert xb Ab - {xa}")
-   prefer 2 apply blast
-  apply (subgoal_tac "card Aa <= card Ab")
-   prefer 2
-   apply (rule Suc_le_mono [THEN subst])
-   apply (simp add: card_Suc_Diff1)
-  apply (rule_tac A1 = "Aa - {xb}" in finite_imp_foldSetD [THEN exE])
-  apply (blast intro: foldSetD_imp_finite finite_Diff)
-(* new subgoal from finite_imp_foldSetD *)
-    apply best (* blast doesn't seem to solve this *)
-   apply assumption
-  apply (frule (1) Diff1_foldSetD)
-(* new subgoal from Diff1_foldSetD *)
-    apply best
-(*
-apply (best del: foldSetD_closed elim: foldSetD_closed)
-    apply (rule f_closed) apply assumption apply (rule foldSetD_closed)
-    prefer 3 apply assumption apply (rule e_closed)
-    apply (rule f_closed) apply force apply assumption
-*)
-  apply (subgoal_tac "ya = f xb x")
-   prefer 2
-(* new subgoal to make IH applicable *) 
-  apply (subgoal_tac "Aa <= B")
-   prefer 2 apply best
-   apply (blast del: equalityCE)
-  apply (subgoal_tac "(Ab - {xa}, x) : foldSetD D f e")
-   prefer 2 apply simp
-  apply (subgoal_tac "yb = f xa x")
-   prefer 2 
-(*   apply (drule_tac x = xa in Diff1_foldSetD)
-     apply assumption
-     apply (rule f_closed) apply best apply (rule foldSetD_closed)
-     prefer 3 apply assumption apply (rule e_closed)
-     apply (rule f_closed) apply best apply assumption
-*)
-   apply (blast del: equalityCE dest: Diff1_foldSetD)
-   apply (simp (no_asm_simp))
-   apply (rule left_commute)
-   apply assumption apply best apply best
- done
-
-lemma (in LCD) foldSetD_determ:
-  "[| (A, x) : foldSetD D f e; (A, y) : foldSetD D f e; e : D; A <= B |]
-   ==> y = x"
-  by (blast intro: foldSetD_determ_aux [rule_format])
-
-lemma (in LCD) foldD_equality:
-  "[| (A, y) : foldSetD D f e; e : D; A <= B |] ==> foldD D f e A = y"
-  by (unfold foldD_def) (blast intro: foldSetD_determ)
-
-lemma foldD_empty [simp]:
-  "e : D ==> foldD D f e {} = e"
-  by (unfold foldD_def) blast
-
-lemma (in LCD) foldD_insert_aux:
-  "[| x ~: A; x : B; e : D; A <= B |] ==>
-    ((insert x A, v) : foldSetD D f e) =
-    (EX y. (A, y) : foldSetD D f e & v = f x y)"
-  apply auto
-  apply (rule_tac A1 = A in finite_imp_foldSetD [THEN exE])
-   apply (fastsimp dest: foldSetD_imp_finite)
-(* new subgoal by finite_imp_foldSetD *)
-    apply assumption
-    apply assumption
-  apply (blast intro: foldSetD_determ)
-  done
-
-lemma (in LCD) foldD_insert:
-    "[| finite A; x ~: A; x : B; e : D; A <= B |] ==>
-     foldD D f e (insert x A) = f x (foldD D f e A)"
-  apply (unfold foldD_def)
-  apply (simp add: foldD_insert_aux)
-  apply (rule the_equality)
-  apply (auto intro: finite_imp_foldSetD
-    cong add: conj_cong simp add: foldD_def [symmetric] foldD_equality)
-  done
-
-lemma (in LCD) foldD_closed [simp]:
-  "[| finite A; e : D; A <= B |] ==> foldD D f e A : D"
-proof (induct set: Finites)
-  case empty then show ?case by (simp add: foldD_empty)
-next
-  case insert then show ?case by (simp add: foldD_insert)
-qed
-
-lemma (in LCD) foldD_commute:
-  "[| finite A; x : B; e : D; A <= B |] ==>
-   f x (foldD D f e A) = foldD D f (f x e) A"
-  apply (induct set: Finites)
-   apply simp
-  apply (auto simp add: left_commute foldD_insert)
-  done
-
-lemma Int_mono2:
-  "[| A <= C; B <= C |] ==> A Int B <= C"
-  by blast
-
-lemma (in LCD) foldD_nest_Un_Int:
-  "[| finite A; finite C; e : D; A <= B; C <= B |] ==>
-   foldD D f (foldD D f e C) A = foldD D f (foldD D f e (A Int C)) (A Un C)"
-  apply (induct set: Finites)
-   apply simp
-  apply (simp add: foldD_insert foldD_commute Int_insert_left insert_absorb
-    Int_mono2 Un_subset_iff)
-  done
-
-lemma (in LCD) foldD_nest_Un_disjoint:
-  "[| finite A; finite B; A Int B = {}; e : D; A <= B; C <= B |]
-    ==> foldD D f e (A Un B) = foldD D f (foldD D f e B) A"
-  by (simp add: foldD_nest_Un_Int)
-
--- {* Delete rules to do with @{text foldSetD} relation. *}
-
-declare foldSetD_imp_finite [simp del]
-  empty_foldSetDE [rule del]
-  foldSetD.intros [rule del]
-declare (in LCD)
-  foldSetD_closed [rule del]
-
-subsection {* Commutative monoids *}
-
-text {*
-  We enter a more restrictive context, with @{text "f :: 'a => 'a => 'a"}
-  instead of @{text "'b => 'a => 'a"}.
-*}
-
-locale ACeD =
-  fixes D :: "'a set"
-    and f :: "'a => 'a => 'a"    (infixl "\<cdot>" 70)
-    and e :: 'a
-  assumes ident [simp]: "x : D ==> x \<cdot> e = x"
-    and commute: "[| x : D; y : D |] ==> x \<cdot> y = y \<cdot> x"
-    and assoc: "[| x : D; y : D; z : D |] ==> (x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)"
-    and e_closed [simp]: "e : D"
-    and f_closed [simp]: "[| x : D; y : D |] ==> x \<cdot> y : D"
-
-lemma (in ACeD) left_commute:
-  "[| x : D; y : D; z : D |] ==> x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)"
-proof -
-  assume D: "x : D" "y : D" "z : D"
-  then have "x \<cdot> (y \<cdot> z) = (y \<cdot> z) \<cdot> x" by (simp add: commute)
-  also from D have "... = y \<cdot> (z \<cdot> x)" by (simp add: assoc)
-  also from D have "z \<cdot> x = x \<cdot> z" by (simp add: commute)
-  finally show ?thesis .
-qed
-
-lemmas (in ACeD) AC = assoc commute left_commute
-
-lemma (in ACeD) left_ident [simp]: "x : D ==> e \<cdot> x = x"
-proof -
-  assume D: "x : D"
-  have "x \<cdot> e = x" by (rule ident)
-  with D show ?thesis by (simp add: commute)
-qed
-
-lemma (in ACeD) foldD_Un_Int:
-  "[| finite A; finite B; A <= D; B <= D |] ==>
-    foldD D f e A \<cdot> foldD D f e B =
-    foldD D f e (A Un B) \<cdot> foldD D f e (A Int B)"
-  apply (induct set: Finites)
-   apply (simp add: left_commute LCD.foldD_closed [OF LCD.intro [of D]])
-(* left_commute is required to show premise of LCD.intro *)
-  apply (simp add: AC insert_absorb Int_insert_left
-    LCD.foldD_insert [OF LCD.intro [of D]]
-    LCD.foldD_closed [OF LCD.intro [of D]]
-    Int_mono2 Un_subset_iff)
-  done
-
-lemma (in ACeD) foldD_Un_disjoint:
-  "[| finite A; finite B; A Int B = {}; A <= D; B <= D |] ==>
-    foldD D f e (A Un B) = foldD D f e A \<cdot> foldD D f e B"
-  by (simp add: foldD_Un_Int
-    left_commute LCD.foldD_closed [OF LCD.intro [of D]] Un_subset_iff)
-
-subsection {* Products over Finite Sets *}
-
-constdefs
-  finprod :: "[('b, 'm) monoid_scheme, 'a => 'b, 'a set] => 'b"
-  "finprod G f A == if finite A
-      then foldD (carrier G) (mult G o f) (one G) A
-      else arbitrary"
-
-(*
-locale finite_prod = abelian_monoid + var prod +
-  defines "prod == (%f A. if finite A
-      then foldD (carrier G) (op \<otimes> o f) \<one> A
-      else arbitrary)"
-*)
-(* TODO: nice syntax for the summation operator inside the locale
-   like \<Otimes>\<index> i\<in>A. f i, probably needs hand-coded translation *)
-
-ML_setup {* 
-
-Context.>> (fn thy => (simpset_ref_of thy :=
-  simpset_of thy setsubgoaler asm_full_simp_tac; thy)) *}
-
-lemma (in abelian_monoid) finprod_empty [simp]: 
-  "finprod G f {} = \<one>"
-  by (simp add: finprod_def)
-
-ML_setup {* 
-
-Context.>> (fn thy => (simpset_ref_of thy :=
-  simpset_of thy setsubgoaler asm_simp_tac; thy)) *}
-
-declare funcsetI [intro]
-  funcset_mem [dest]
-
-lemma (in abelian_monoid) finprod_insert [simp]:
-  "[| finite F; a \<notin> F; f \<in> F -> carrier G; f a \<in> carrier G |] ==>
-   finprod G f (insert a F) = f a \<otimes> finprod G f F"
-  apply (rule trans)
-  apply (simp add: finprod_def)
-  apply (rule trans)
-  apply (rule LCD.foldD_insert [OF LCD.intro [of "insert a F"]])
-    apply simp
-    apply (rule m_lcomm)
-      apply fast apply fast apply assumption
-    apply (fastsimp intro: m_closed)
-    apply simp+ apply fast
-  apply (auto simp add: finprod_def)
-  done
-
-lemma (in abelian_monoid) finprod_one:
-  "finite A ==> finprod G (%i. \<one>) A = \<one>"
-proof (induct set: Finites)
-  case empty show ?case by simp
-next
-  case (insert A a)
-  have "(%i. \<one>) \<in> A -> carrier G" by auto
-  with insert show ?case by simp
-qed
-
-lemma (in abelian_monoid) finprod_closed [simp]:
-  fixes A
-  assumes fin: "finite A" and f: "f \<in> A -> carrier G" 
-  shows "finprod G f A \<in> carrier G"
-using fin f
-proof induct
-  case empty show ?case by simp
-next
-  case (insert A a)
-  then have a: "f a \<in> carrier G" by fast
-  from insert have A: "f \<in> A -> carrier G" by fast
-  from insert A a show ?case by simp
-qed
-
-lemma funcset_Int_left [simp, intro]:
-  "[| f \<in> A -> C; f \<in> B -> C |] ==> f \<in> A Int B -> C"
-  by fast
-
-lemma funcset_Un_left [iff]:
-  "(f \<in> A Un B -> C) = (f \<in> A -> C & f \<in> B -> C)"
-  by fast
-
-lemma (in abelian_monoid) finprod_Un_Int:
-  "[| finite A; finite B; g \<in> A -> carrier G; g \<in> B -> carrier G |] ==>
-     finprod G g (A Un B) \<otimes> finprod G g (A Int B) =
-     finprod G g A \<otimes> finprod G g B"
-  -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
-proof (induct set: Finites)
-  case empty then show ?case by (simp add: finprod_closed)
-next
-  case (insert A a)
-  then have a: "g a \<in> carrier G" by fast
-  from insert have A: "g \<in> A -> carrier G" by fast
-  from insert A a show ?case
-    by (simp add: ac Int_insert_left insert_absorb finprod_closed
-          Int_mono2 Un_subset_iff) 
-qed
-
-lemma (in abelian_monoid) finprod_Un_disjoint:
-  "[| finite A; finite B; A Int B = {};
-      g \<in> A -> carrier G; g \<in> B -> carrier G |]
-   ==> finprod G g (A Un B) = finprod G g A \<otimes> finprod G g B"
-  apply (subst finprod_Un_Int [symmetric])
-    apply (auto simp add: finprod_closed)
-  done
-
-lemma (in abelian_monoid) finprod_multf:
-  "[| finite A; f \<in> A -> carrier G; g \<in> A -> carrier G |] ==>
-   finprod G (%x. f x \<otimes> g x) A = (finprod G f A \<otimes> finprod G g A)"
-proof (induct set: Finites)
-  case empty show ?case by simp
-next
-  case (insert A a) then
-  have fA: "f : A -> carrier G" by fast
-  from insert have fa: "f a : carrier G" by fast
-  from insert have gA: "g : A -> carrier G" by fast
-  from insert have ga: "g a : carrier G" by fast
-  from insert have fga: "(%x. f x \<otimes> g x) a : carrier G" by (simp add: Pi_def)
-  from insert have fgA: "(%x. f x \<otimes> g x) : A -> carrier G"
-    by (simp add: Pi_def)
-  show ?case  (* check if all simps are really necessary *)
-    by (simp add: insert fA fa gA ga fgA fga ac finprod_closed Int_insert_left insert_absorb Int_mono2 Un_subset_iff)
-qed
-
-lemma (in abelian_monoid) finprod_cong':
-  "[| A = B; g : B -> carrier G;
-      !!i. i : B ==> f i = g i |] ==> finprod G f A = finprod G g B"
-proof -
-  assume prems: "A = B" "g : B -> carrier G"
-    "!!i. i : B ==> f i = g i"
-  show ?thesis
-  proof (cases "finite B")
-    case True
-    then have "!!A. [| A = B; g : B -> carrier G;
-      !!i. i : B ==> f i = g i |] ==> finprod G f A = finprod G g B"
-    proof induct
-      case empty thus ?case by simp
-    next
-      case (insert B x)
-      then have "finprod G f A = finprod G f (insert x B)" by simp
-      also from insert have "... = f x \<otimes> finprod G f B"
-      proof (intro finprod_insert)
-	show "finite B" .
-      next
-	show "x ~: B" .
-      next
-	assume "x ~: B" "!!i. i \<in> insert x B \<Longrightarrow> f i = g i"
-	  "g \<in> insert x B \<rightarrow> carrier G"
-	thus "f : B -> carrier G" by fastsimp
-      next
-	assume "x ~: B" "!!i. i \<in> insert x B \<Longrightarrow> f i = g i"
-	  "g \<in> insert x B \<rightarrow> carrier G"
-	thus "f x \<in> carrier G" by fastsimp
-      qed
-      also from insert have "... = g x \<otimes> finprod G g B" by fastsimp
-      also from insert have "... = finprod G g (insert x B)"
-      by (intro finprod_insert [THEN sym]) auto
-      finally show ?case .
-    qed
-    with prems show ?thesis by simp
-  next
-    case False with prems show ?thesis by (simp add: finprod_def)
-  qed
-qed
-
-lemma (in abelian_monoid) finprod_cong:
-  "[| A = B; !!i. i : B ==> f i = g i;
-      g : B -> carrier G = True |] ==> finprod G f A = finprod G g B"
-  by (rule finprod_cong') fast+
-
-text {*Usually, if this rule causes a failed congruence proof error,
-  the reason is that the premise @{text "g : B -> carrier G"} cannot be shown.
-  Adding @{thm [source] Pi_def} to the simpset is often useful.
-  For this reason, @{thm [source] abelian_monoid.finprod_cong}
-  is not added to the simpset by default.
-*}
-
-declare funcsetI [rule del]
-  funcset_mem [rule del]
-
-lemma (in abelian_monoid) finprod_0 [simp]:
-  "f : {0::nat} -> carrier G ==> finprod G f {..0} = f 0"
-by (simp add: Pi_def)
-
-lemma (in abelian_monoid) finprod_Suc [simp]:
-  "f : {..Suc n} -> carrier G ==>
-   finprod G f {..Suc n} = (f (Suc n) \<otimes> finprod G f {..n})"
-by (simp add: Pi_def atMost_Suc)
-
-lemma (in abelian_monoid) finprod_Suc2:
-  "f : {..Suc n} -> carrier G ==>
-   finprod G f {..Suc n} = (finprod G (%i. f (Suc i)) {..n} \<otimes> f 0)"
-proof (induct n)
-  case 0 thus ?case by (simp add: Pi_def)
-next
-  case Suc thus ?case by (simp add: m_assoc Pi_def finprod_closed)
-qed
-
-lemma (in abelian_monoid) finprod_mult [simp]:
-  "[| f : {..n} -> carrier G; g : {..n} -> carrier G |] ==>
-     finprod G (%i. f i \<otimes> g i) {..n::nat} =
-     finprod G f {..n} \<otimes> finprod G g {..n}"
-  by (induct n) (simp_all add: ac Pi_def finprod_closed)
-
-end
-