src/HOL/Real/HahnBanach/FunctionNorm.thy
changeset 9408 d3d56e1d2ec1
parent 9394 1ff8a6234c6a
child 9503 3324cbbecef8
--- a/src/HOL/Real/HahnBanach/FunctionNorm.thy	Sun Jul 23 11:59:21 2000 +0200
+++ b/src/HOL/Real/HahnBanach/FunctionNorm.thy	Sun Jul 23 12:01:05 2000 +0200
@@ -30,11 +30,11 @@
   fix x assume "x \\<in> V" show "|f x| <= c * norm x" by (rule r)
 qed
   
-lemma continuous_linearform [intro??]: 
+lemma continuous_linearform [intro?]: 
   "is_continuous V norm f ==> is_linearform V f"
   by (unfold is_continuous_def) force
 
-lemma continuous_bounded [intro??]:
+lemma continuous_bounded [intro?]:
   "is_continuous V norm f 
   ==> \\<exists>c. \\<forall>x \\<in> V. |f x| <= c * norm x"
   by (unfold is_continuous_def) force
@@ -93,7 +93,7 @@
 text {* The following lemma states that every continuous linear form
 on a normed space $(V, \norm{\cdot})$ has a function norm. *}
 
-lemma ex_fnorm [intro??]: 
+lemma ex_fnorm [intro?]: 
   "[| is_normed_vectorspace V norm; is_continuous V norm f|]
      ==> is_function_norm f V norm \\<parallel>f\\<parallel>V,norm" 
 proof (unfold function_norm_def is_function_norm_def 
@@ -193,7 +193,7 @@
 
 text {* The norm of a continuous function is always $\geq 0$. *}
 
-lemma fnorm_ge_zero [intro??]: 
+lemma fnorm_ge_zero [intro?]: 
   "[| is_continuous V norm f; is_normed_vectorspace V norm |]
    ==> #0 <= \\<parallel>f\\<parallel>V,norm"
 proof -