src/HOL/Induct/LList.ML
changeset 13075 d3e1d554cd6d
parent 13074 96bf406fd3e5
child 13076 70704dd48bd5
--- a/src/HOL/Induct/LList.ML	Tue Apr 02 13:47:01 2002 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,876 +0,0 @@
-(*  Title:      HOL/Induct/LList
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1993  University of Cambridge
-
-SHOULD LListD_Fun_CONS_I, etc., be equations (for rewriting)?
-*)
-
-bind_thm ("UN1_I", UNIV_I RS UN_I);
-
-(** Simplification **)
-
-Addsplits [option.split];
-
-(*This justifies using llist in other recursive type definitions*)
-Goalw llist.defs "A<=B ==> llist(A) <= llist(B)";
-by (rtac gfp_mono 1);
-by (REPEAT (ares_tac basic_monos 1));
-qed "llist_mono";
-
-
-Goal "llist(A) = usum {Numb(0)} (uprod A (llist A))";
-let val rew = rewrite_rule [NIL_def, CONS_def] in  
-by (fast_tac (claset() addSIs (map rew llist.intrs)
-                       addEs [rew llist.elim]) 1)
-end;
-qed "llist_unfold";
-
-
-(*** Type checking by coinduction, using list_Fun 
-     THE COINDUCTIVE DEFINITION PACKAGE COULD DO THIS!
-***)
-
-Goalw [list_Fun_def]
-    "[| M : X;  X <= list_Fun A (X Un llist(A)) |] ==>  M : llist(A)";
-by (etac llist.coinduct 1);
-by (etac (subsetD RS CollectD) 1);
-by (assume_tac 1);
-qed "llist_coinduct";
-
-Goalw [list_Fun_def, NIL_def] "NIL: list_Fun A X";
-by (Fast_tac 1);
-qed "list_Fun_NIL_I";
-AddIffs [list_Fun_NIL_I];
-
-Goalw [list_Fun_def,CONS_def]
-    "[| M: A;  N: X |] ==> CONS M N : list_Fun A X";
-by (Fast_tac 1);
-qed "list_Fun_CONS_I";
-Addsimps [list_Fun_CONS_I];
-AddSIs   [list_Fun_CONS_I];
-
-(*Utilise the "strong" part, i.e. gfp(f)*)
-Goalw (llist.defs @ [list_Fun_def])
-    "M: llist(A) ==> M : list_Fun A (X Un llist(A))";
-by (etac (llist.mono RS gfp_fun_UnI2) 1);
-qed "list_Fun_llist_I";
-
-(*** LList_corec satisfies the desired recurion equation ***)
-
-(*A continuity result?*)
-Goalw [CONS_def] "CONS M (UN x. f(x)) = (UN x. CONS M (f x))";
-by (simp_tac (simpset() addsimps [In1_UN1, Scons_UN1_y]) 1);
-qed "CONS_UN1";
-
-Goalw [CONS_def] "[| M<=M';  N<=N' |] ==> CONS M N <= CONS M' N'";
-by (REPEAT (ares_tac [In1_mono,Scons_mono] 1));
-qed "CONS_mono";
-
-Addsimps [LList_corec_fun_def RS def_nat_rec_0,
-          LList_corec_fun_def RS def_nat_rec_Suc];
-
-(** The directions of the equality are proved separately **)
-
-Goalw [LList_corec_def]
-    "LList_corec a f <= \
-\    (case f a of None => NIL | Some(z,w) => CONS z (LList_corec w f))";
-by (rtac UN_least 1);
-by (case_tac "k" 1);
-by (ALLGOALS Asm_simp_tac);
-by (REPEAT (resolve_tac [allI, impI, subset_refl RS CONS_mono, 
-			 UNIV_I RS UN_upper] 1));
-qed "LList_corec_subset1";
-
-Goalw [LList_corec_def]
-    "(case f a of None => NIL | Some(z,w) => CONS z (LList_corec w f)) <= \
-\    LList_corec a f";
-by (simp_tac (simpset() addsimps [CONS_UN1]) 1);
-by Safe_tac;
-by (ALLGOALS (res_inst_tac [("a","Suc(?k)")] UN_I));
-by (ALLGOALS Asm_simp_tac);
-qed "LList_corec_subset2";
-
-(*the recursion equation for LList_corec -- NOT SUITABLE FOR REWRITING!*)
-Goal "LList_corec a f =  \
-\     (case f a of None => NIL | Some(z,w) => CONS z (LList_corec w f))";
-by (REPEAT (resolve_tac [equalityI, LList_corec_subset1, 
-                         LList_corec_subset2] 1));
-qed "LList_corec";
-
-(*definitional version of same*)
-val [rew] = 
-Goal "[| !!x. h(x) == LList_corec x f |]     \
-\     ==> h(a) = (case f a of None => NIL | Some(z,w) => CONS z (h w))";
-by (rewtac rew);
-by (rtac LList_corec 1);
-qed "def_LList_corec";
-
-(*A typical use of co-induction to show membership in the gfp. 
-  Bisimulation is  range(%x. LList_corec x f) *)
-Goal "LList_corec a f : llist UNIV";
-by (res_inst_tac [("X", "range(%x. LList_corec x ?g)")] llist_coinduct 1);
-by (rtac rangeI 1);
-by Safe_tac;
-by (stac LList_corec 1);
-by (Simp_tac 1);
-qed "LList_corec_type";
-
-
-(**** llist equality as a gfp; the bisimulation principle ****)
-
-(*This theorem is actually used, unlike the many similar ones in ZF*)
-Goal "LListD r = dsum (diag {Numb 0}) (dprod r (LListD r))";
-let val rew = rewrite_rule [NIL_def, CONS_def] in  
-by (fast_tac (claset() addSIs (map rew LListD.intrs)
-                      addEs [rew LListD.elim]) 1)
-end;
-qed "LListD_unfold";
-
-Goal "!M N. (M,N) : LListD(diag A) --> ntrunc k M = ntrunc k N";
-by (induct_thm_tac nat_less_induct "k" 1);
-by (safe_tac (claset() delrules [equalityI]));
-by (etac LListD.elim 1);
-by (safe_tac (claset() delrules [equalityI]));
-by (case_tac "n" 1);
-by (Asm_simp_tac 1);
-by (rename_tac "n'" 1);
-by (case_tac "n'" 1);
-by (asm_simp_tac (simpset() addsimps [CONS_def]) 1);
-by (asm_simp_tac (simpset() addsimps [CONS_def, less_Suc_eq]) 1);
-qed "LListD_implies_ntrunc_equality";
-
-(*The domain of the LListD relation*)
-Goalw (llist.defs @ [NIL_def, CONS_def])
-    "Domain (LListD(diag A)) <= llist(A)";
-by (rtac gfp_upperbound 1);
-(*avoids unfolding LListD on the rhs*)
-by (res_inst_tac [("P", "%x. Domain x <= ?B")] (LListD_unfold RS ssubst) 1);
-by (Simp_tac 1);
-by (Fast_tac 1);
-qed "Domain_LListD";
-
-(*This inclusion justifies the use of coinduction to show M=N*)
-Goal "LListD(diag A) <= diag(llist(A))";
-by (rtac subsetI 1);
-by (res_inst_tac [("p","x")] PairE 1);
-by Safe_tac;
-by (rtac diag_eqI 1);
-by (rtac (LListD_implies_ntrunc_equality RS spec RS spec RS mp RS 
-          ntrunc_equality) 1);
-by (assume_tac 1);
-by (etac (DomainI RS (Domain_LListD RS subsetD)) 1);
-qed "LListD_subset_diag";
-
-
-(** Coinduction, using LListD_Fun
-    THE COINDUCTIVE DEFINITION PACKAGE COULD DO THIS!
- **)
-
-Goalw [LListD_Fun_def] "A<=B ==> LListD_Fun r A <= LListD_Fun r B";
-by (REPEAT (ares_tac basic_monos 1));
-qed "LListD_Fun_mono";
-
-Goalw [LListD_Fun_def]
-    "[| M : X;  X <= LListD_Fun r (X Un LListD(r)) |] ==>  M : LListD(r)";
-by (etac LListD.coinduct 1);
-by (etac (subsetD RS CollectD) 1);
-by (assume_tac 1);
-qed "LListD_coinduct";
-
-Goalw [LListD_Fun_def,NIL_def] "(NIL,NIL) : LListD_Fun r s";
-by (Fast_tac 1);
-qed "LListD_Fun_NIL_I";
-
-Goalw [LListD_Fun_def,CONS_def]
- "[| x:A;  (M,N):s |] ==> (CONS x M, CONS x N) : LListD_Fun (diag A) s";
-by (Fast_tac 1);
-qed "LListD_Fun_CONS_I";
-
-(*Utilise the "strong" part, i.e. gfp(f)*)
-Goalw (LListD.defs @ [LListD_Fun_def])
-    "M: LListD(r) ==> M : LListD_Fun r (X Un LListD(r))";
-by (etac (LListD.mono RS gfp_fun_UnI2) 1);
-qed "LListD_Fun_LListD_I";
-
-
-(*This converse inclusion helps to strengthen LList_equalityI*)
-Goal "diag(llist(A)) <= LListD(diag A)";
-by (rtac subsetI 1);
-by (etac LListD_coinduct 1);
-by (rtac subsetI 1);
-by (etac diagE 1);
-by (etac ssubst 1);
-by (eresolve_tac [llist.elim] 1);
-by (ALLGOALS
-    (asm_simp_tac (simpset() addsimps [diagI, LListD_Fun_NIL_I,
-				       LListD_Fun_CONS_I])));
-qed "diag_subset_LListD";
-
-Goal "LListD(diag A) = diag(llist(A))";
-by (REPEAT (resolve_tac [equalityI, LListD_subset_diag, 
-                         diag_subset_LListD] 1));
-qed "LListD_eq_diag";
-
-Goal "M: llist(A) ==> (M,M) : LListD_Fun (diag A) (X Un diag(llist(A)))";
-by (rtac (LListD_eq_diag RS subst) 1);
-by (rtac LListD_Fun_LListD_I 1);
-by (asm_simp_tac (simpset() addsimps [LListD_eq_diag, diagI]) 1);
-qed "LListD_Fun_diag_I";
-
-
-(** To show two LLists are equal, exhibit a bisimulation! 
-      [also admits true equality]
-   Replace "A" by some particular set, like {x.True}??? *)
-Goal "[| (M,N) : r;  r <= LListD_Fun (diag A) (r Un diag(llist(A))) \
-\         |] ==>  M=N";
-by (rtac (LListD_subset_diag RS subsetD RS diagE) 1);
-by (etac LListD_coinduct 1);
-by (asm_simp_tac (simpset() addsimps [LListD_eq_diag]) 1);
-by Safe_tac;
-qed "LList_equalityI";
-
-
-(*** Finality of llist(A): Uniqueness of functions defined by corecursion ***)
-
-(*We must remove Pair_eq because it may turn an instance of reflexivity
-  (h1 b, h2 b) = (h1 ?x17, h2 ?x17) into a conjunction! 
-  (or strengthen the Solver?) 
-*)
-Delsimps [Pair_eq];
-
-(*abstract proof using a bisimulation*)
-val [prem1,prem2] = 
-Goal
- "[| !!x. h1(x) = (case f x of None => NIL | Some(z,w) => CONS z (h1 w));  \
-\    !!x. h2(x) = (case f x of None => NIL | Some(z,w) => CONS z (h2 w)) |]\
-\ ==> h1=h2";
-by (rtac ext 1);
-(*next step avoids an unknown (and flexflex pair) in simplification*)
-by (res_inst_tac [("A", "UNIV"),
-                  ("r", "range(%u. (h1(u),h2(u)))")] LList_equalityI 1);
-by (rtac rangeI 1);
-by Safe_tac;
-by (stac prem1 1);
-by (stac prem2 1);
-by (simp_tac (simpset() addsimps [LListD_Fun_NIL_I,
-				  UNIV_I RS LListD_Fun_CONS_I]) 1);
-qed "LList_corec_unique";
-
-val [prem] = 
-Goal 
- "[| !!x. h(x) = (case f x of None => NIL | Some(z,w) => CONS z (h w)) |] \
-\ ==> h = (%x. LList_corec x f)";
-by (rtac (LList_corec RS (prem RS LList_corec_unique)) 1);
-qed "equals_LList_corec";
-
-
-(** Obsolete LList_corec_unique proof: complete induction, not coinduction **)
-
-Goalw [CONS_def] "ntrunc (Suc 0) (CONS M N) = {}";
-by (rtac ntrunc_one_In1 1);
-qed "ntrunc_one_CONS";
-
-Goalw [CONS_def]
-    "ntrunc (Suc(Suc(k))) (CONS M N) = CONS (ntrunc k M) (ntrunc k N)";
-by (Simp_tac 1);
-qed "ntrunc_CONS";
-
-Addsimps [ntrunc_one_CONS, ntrunc_CONS];
-
-
-val [prem1,prem2] = 
-Goal 
- "[| !!x. h1(x) = (case f x of None => NIL | Some(z,w) => CONS z (h1 w));  \
-\    !!x. h2(x) = (case f x of None => NIL | Some(z,w) => CONS z (h2 w)) |]\
-\ ==> h1=h2";
-by (rtac (ntrunc_equality RS ext) 1);
-by (rename_tac "x k" 1);
-by (res_inst_tac [("x", "x")] spec 1);
-by (induct_thm_tac nat_less_induct "k" 1);
-by (rename_tac "n" 1);
-by (rtac allI 1);
-by (rename_tac "y" 1);
-by (stac prem1 1);
-by (stac prem2 1);
-by (Simp_tac 1);
-by (strip_tac 1);
-by (case_tac "n" 1);
-by (rename_tac "m" 2);
-by (case_tac "m" 2);
-by (ALLGOALS (asm_simp_tac (simpset() addsimps [less_Suc_eq])));
-result();
-
-
-(*** Lconst -- defined directly using lfp, but equivalent to a LList_corec ***)
-
-Goal "mono(CONS(M))";
-by (REPEAT (ares_tac [monoI, subset_refl, CONS_mono] 1));
-qed "Lconst_fun_mono";
-
-(* Lconst(M) = CONS M (Lconst M) *)
-bind_thm ("Lconst", (Lconst_fun_mono RS (Lconst_def RS def_lfp_unfold)));
-
-(*A typical use of co-induction to show membership in the gfp.
-  The containing set is simply the singleton {Lconst(M)}. *)
-Goal "M:A ==> Lconst(M): llist(A)";
-by (rtac (singletonI RS llist_coinduct) 1);
-by Safe_tac;
-by (res_inst_tac [("P", "%u. u: ?A")] (Lconst RS ssubst) 1);
-by (REPEAT (ares_tac [list_Fun_CONS_I, singletonI, UnI1] 1));
-qed "Lconst_type";
-
-Goal "Lconst(M) = LList_corec M (%x. Some(x,x))";
-by (rtac (equals_LList_corec RS fun_cong) 1);
-by (Simp_tac 1);
-by (rtac Lconst 1);
-qed "Lconst_eq_LList_corec";
-
-(*Thus we could have used gfp in the definition of Lconst*)
-Goal "gfp(%N. CONS M N) = LList_corec M (%x. Some(x,x))";
-by (rtac (equals_LList_corec RS fun_cong) 1);
-by (Simp_tac 1);
-by (rtac (Lconst_fun_mono RS gfp_unfold) 1);
-qed "gfp_Lconst_eq_LList_corec";
-
-
-(*** Isomorphisms ***)
-
-Goal "inj Rep_LList";
-by (rtac inj_inverseI 1);
-by (rtac Rep_LList_inverse 1);
-qed "inj_Rep_LList";
-
-
-Goalw [LList_def] "x : llist (range Leaf) ==> x : LList";
-by (Asm_simp_tac 1);
-qed "LListI";
-
-Goalw [LList_def] "x : LList ==> x : llist (range Leaf)";
-by (Asm_simp_tac 1);
-qed "LListD";
-
-
-(** Distinctness of constructors **)
-
-Goalw [LNil_def,LCons_def] "~ LCons x xs = LNil";
-by (stac (thm "Abs_LList_inject") 1);
-by (REPEAT (resolve_tac (llist.intrs @ [CONS_not_NIL, rangeI, 
-                                        LListI, Rep_LList RS LListD]) 1));
-qed "LCons_not_LNil";
-
-bind_thm ("LNil_not_LCons", LCons_not_LNil RS not_sym);
-
-AddIffs [LCons_not_LNil, LNil_not_LCons];
-
-
-(** llist constructors **)
-
-Goalw [LNil_def] "Rep_LList LNil = NIL";
-by (rtac (llist.NIL_I RS LListI RS Abs_LList_inverse) 1);
-qed "Rep_LList_LNil";
-
-Goalw [LCons_def] "Rep_LList(LCons x l) = CONS (Leaf x) (Rep_LList l)";
-by (REPEAT (resolve_tac [llist.CONS_I RS LListI RS Abs_LList_inverse,
-                         rangeI, Rep_LList RS LListD] 1));
-qed "Rep_LList_LCons";
-
-(** Injectiveness of CONS and LCons **)
-
-Goalw [CONS_def] "(CONS M N=CONS M' N') = (M=M' & N=N')";
-by (fast_tac (claset() addSEs [Scons_inject]) 1);
-qed "CONS_CONS_eq2";
-
-bind_thm ("CONS_inject", CONS_CONS_eq RS iffD1 RS conjE);
-
-
-(*For reasoning about abstract llist constructors*)
-
-AddIs [Rep_LList RS LListD, LListI];
-AddIs llist.intrs;
-
-Goalw [LCons_def] "(LCons x xs=LCons y ys) = (x=y & xs=ys)";
-by (stac (thm "Abs_LList_inject") 1);
-by (auto_tac (claset(), simpset() addsimps [thm "Rep_LList_inject"])); 
-qed "LCons_LCons_eq";
-
-AddIffs [LCons_LCons_eq];
-
-Goal "CONS M N: llist(A) ==> M: A & N: llist(A)";
-by (etac llist.elim 1);
-by (etac CONS_neq_NIL 1);
-by (Fast_tac 1);
-qed "CONS_D2";
-
-
-(****** Reasoning about llist(A) ******)
-
-Addsimps [List_case_NIL, List_case_CONS];
-
-(*A special case of list_equality for functions over lazy lists*)
-val [Mlist,gMlist,NILcase,CONScase] = 
-Goal
- "[| M: llist(A); g(NIL): llist(A);                             \
-\    f(NIL)=g(NIL);                                             \
-\    !!x l. [| x:A;  l: llist(A) |] ==>                         \
-\           (f(CONS x l),g(CONS x l)) :                         \
-\               LListD_Fun (diag A) ((%u.(f(u),g(u)))`llist(A) Un  \
-\                                   diag(llist(A)))             \
-\ |] ==> f(M) = g(M)";
-by (rtac LList_equalityI 1);
-by (rtac (Mlist RS imageI) 1);
-by (rtac image_subsetI 1);
-by (etac llist.elim 1);
-by (etac ssubst 1);
-by (stac NILcase 1);
-by (rtac (gMlist RS LListD_Fun_diag_I) 1);
-by (etac ssubst 1);
-by (REPEAT (ares_tac [CONScase] 1));
-qed "LList_fun_equalityI";
-
-
-(*** The functional "Lmap" ***)
-
-Goal "Lmap f NIL = NIL";
-by (rtac (Lmap_def RS def_LList_corec RS trans) 1);
-by (Simp_tac 1);
-qed "Lmap_NIL";
-
-Goal "Lmap f (CONS M N) = CONS (f M) (Lmap f N)";
-by (rtac (Lmap_def RS def_LList_corec RS trans) 1);
-by (Simp_tac 1);
-qed "Lmap_CONS";
-
-Addsimps [Lmap_NIL, Lmap_CONS];
-
-(*Another type-checking proof by coinduction*)
-val [major,minor] = 
-Goal "[| M: llist(A);  !!x. x:A ==> f(x):B |] ==> Lmap f M: llist(B)";
-by (rtac (major RS imageI RS llist_coinduct) 1);
-by Safe_tac;
-by (etac llist.elim 1);
-by (ALLGOALS Asm_simp_tac);
-by (REPEAT (ares_tac [list_Fun_NIL_I, list_Fun_CONS_I, 
-                      minor, imageI, UnI1] 1));
-qed "Lmap_type";
-
-(*This type checking rule synthesises a sufficiently large set for f*)
-Goal "M: llist(A) ==> Lmap f M: llist(f`A)";
-by (etac Lmap_type 1);
-by (etac imageI 1);
-qed "Lmap_type2";
-
-(** Two easy results about Lmap **)
-
-Goalw [o_def] "M: llist(A) ==> Lmap (f o g) M = Lmap f (Lmap g M)";
-by (dtac imageI 1);
-by (etac LList_equalityI 1);
-by Safe_tac;
-by (etac llist.elim 1);
-by (ALLGOALS Asm_simp_tac);
-by (REPEAT (ares_tac [LListD_Fun_NIL_I, imageI, UnI1,
-                      rangeI RS LListD_Fun_CONS_I] 1));
-qed "Lmap_compose";
-
-Goal "M: llist(A) ==> Lmap (%x. x) M = M";
-by (dtac imageI 1);
-by (etac LList_equalityI 1);
-by Safe_tac;
-by (etac llist.elim 1);
-by (ALLGOALS Asm_simp_tac);
-by (REPEAT (ares_tac [LListD_Fun_NIL_I, imageI RS UnI1,
-                      rangeI RS LListD_Fun_CONS_I] 1));
-qed "Lmap_ident";
-
-
-(*** Lappend -- its two arguments cause some complications! ***)
-
-Goalw [Lappend_def] "Lappend NIL NIL = NIL";
-by (rtac (LList_corec RS trans) 1);
-by (Simp_tac 1);
-qed "Lappend_NIL_NIL";
-
-Goalw [Lappend_def]
-    "Lappend NIL (CONS N N') = CONS N (Lappend NIL N')";
-by (rtac (LList_corec RS trans) 1);
-by (Simp_tac 1);
-qed "Lappend_NIL_CONS";
-
-Goalw [Lappend_def]
-    "Lappend (CONS M M') N = CONS M (Lappend M' N)";
-by (rtac (LList_corec RS trans) 1);
-by (Simp_tac 1);
-qed "Lappend_CONS";
-
-Addsimps [llist.NIL_I, Lappend_NIL_NIL, Lappend_NIL_CONS,
-          Lappend_CONS, LListD_Fun_CONS_I, range_eqI, image_eqI];
-
-
-Goal "M: llist(A) ==> Lappend NIL M = M";
-by (etac LList_fun_equalityI 1);
-by (ALLGOALS Asm_simp_tac);
-qed "Lappend_NIL";
-
-Goal "M: llist(A) ==> Lappend M NIL = M";
-by (etac LList_fun_equalityI 1);
-by (ALLGOALS Asm_simp_tac);
-qed "Lappend_NIL2";
-
-Addsimps [Lappend_NIL, Lappend_NIL2];
-
-
-(** Alternative type-checking proofs for Lappend **)
-
-(*weak co-induction: bisimulation and case analysis on both variables*)
-Goal "[| M: llist(A); N: llist(A) |] ==> Lappend M N: llist(A)";
-by (res_inst_tac
-    [("X", "UN u:llist(A). UN v: llist(A). {Lappend u v}")] llist_coinduct 1);
-by (Fast_tac 1);
-by Safe_tac;
-by (eres_inst_tac [("aa", "u")] llist.elim 1);
-by (eres_inst_tac [("aa", "v")] llist.elim 1);
-by (ALLGOALS Asm_simp_tac);
-by (Blast_tac 1);
-qed "Lappend_type";
-
-(*strong co-induction: bisimulation and case analysis on one variable*)
-Goal "[| M: llist(A); N: llist(A) |] ==> Lappend M N: llist(A)";
-by (res_inst_tac [("X", "(%u. Lappend u N)`llist(A)")] llist_coinduct 1);
-by (etac imageI 1);
-by (rtac image_subsetI 1);
-by (eres_inst_tac [("aa", "x")] llist.elim 1);
-by (asm_simp_tac (simpset() addsimps [list_Fun_llist_I]) 1);
-by (Asm_simp_tac 1);
-qed "Lappend_type";
-
-(**** Lazy lists as the type 'a llist -- strongly typed versions of above ****)
-
-(** llist_case: case analysis for 'a llist **)
-
-Addsimps ([LListI RS Abs_LList_inverse, Rep_LList_inverse,
-           Rep_LList RS LListD, rangeI, inj_Leaf, inv_f_f] @ llist.intrs);
-
-Goalw [llist_case_def,LNil_def]  "llist_case c d LNil = c";
-by (Simp_tac 1);
-qed "llist_case_LNil";
-
-Goalw [llist_case_def,LCons_def]
-    "llist_case c d (LCons M N) = d M N";
-by (Simp_tac 1);
-qed "llist_case_LCons";
-
-(*Elimination is case analysis, not induction.*)
-val [prem1,prem2] = 
-Goalw [NIL_def,CONS_def]
-     "[| l=LNil ==> P;  !!x l'. l=LCons x l' ==> P |] ==> P";
-by (rtac (Rep_LList RS LListD RS llist.elim) 1);
-by (asm_full_simp_tac
-    (simpset() addsimps [Rep_LList_LNil RS sym, thm "Rep_LList_inject"]) 1);
-by (etac prem1 1); 
-by (etac (LListI RS thm "Rep_LList_cases") 1); 
-by (Clarify_tac 1);  
-by (asm_full_simp_tac
-    (simpset() addsimps [Rep_LList_LCons RS sym, thm "Rep_LList_inject"]) 1); 
-by (etac prem2 1); 
-qed "llistE";
-
-(** llist_corec: corecursion for 'a llist **)
-
-(*Lemma for the proof of llist_corec*)
-Goal "LList_corec a \
-\          (%z. case f z of None => None | Some(v,w) => Some(Leaf(v),w)) : \
-\       llist(range Leaf)";
-by (res_inst_tac [("X", "range(%x. LList_corec x ?g)")] llist_coinduct 1);
-by (rtac rangeI 1);
-by Safe_tac;
-by (stac LList_corec 1);
-by (Force_tac 1);
-qed "LList_corec_type2";
-
-Goalw [llist_corec_def,LNil_def,LCons_def]
-    "llist_corec a f =  \
-\    (case f a of None => LNil | Some(z,w) => LCons z (llist_corec w f))";
-by (stac LList_corec 1);
-by (case_tac "f a" 1);
-by (asm_simp_tac (simpset() addsimps [LList_corec_type2]) 1);
-by (force_tac (claset(), simpset() addsimps [LList_corec_type2]) 1);
-qed "llist_corec";
-
-(*definitional version of same*)
-val [rew] = 
-Goal "[| !!x. h(x) == llist_corec x f |] ==>     \
-\     h(a) = (case f a of None => LNil | Some(z,w) => LCons z (h w))";
-by (rewtac rew);
-by (rtac llist_corec 1);
-qed "def_llist_corec";
-
-(**** Proofs about type 'a llist functions ****)
-
-(*** Deriving llist_equalityI -- llist equality is a bisimulation ***)
-
-Goalw [LListD_Fun_def]
-    "r <= (llist A) <*> (llist A) ==> \
-\           LListD_Fun (diag A) r <= (llist A) <*> (llist A)";
-by (stac llist_unfold 1);
-by (simp_tac (simpset() addsimps [NIL_def, CONS_def]) 1);
-by (Fast_tac 1);
-qed "LListD_Fun_subset_Times_llist";
-
-Goal "prod_fun Rep_LList Rep_LList ` r <= \
-\    (llist(range Leaf)) <*> (llist(range Leaf))";
-by (fast_tac (claset() delrules [image_subsetI]
-		       addIs [Rep_LList RS LListD]) 1);
-qed "subset_Times_llist";
-
-Goal "r <= (llist(range Leaf)) <*> (llist(range Leaf)) ==> \
-\    prod_fun (Rep_LList o Abs_LList) (Rep_LList o Abs_LList) ` r <= r";
-by Safe_tac;
-by (etac (subsetD RS SigmaE2) 1);
-by (assume_tac 1);
-by (asm_simp_tac (simpset() addsimps [LListI RS Abs_LList_inverse]) 1);
-qed "prod_fun_lemma";
-
-Goal "prod_fun Rep_LList  Rep_LList ` range(%x. (x, x)) = \
-\    diag(llist(range Leaf))";
-by (rtac equalityI 1);
-by (Blast_tac 1);
-by (fast_tac (claset() delSWrapper "split_all_tac"
-		       addSEs [LListI RS Abs_LList_inverse RS subst]) 1);
-qed "prod_fun_range_eq_diag";
-
-(*Used with lfilter*)
-Goalw [llistD_Fun_def, prod_fun_def]
-    "A<=B ==> llistD_Fun A <= llistD_Fun B";
-by Auto_tac;
-by (rtac image_eqI 1);
-by (blast_tac (claset() addIs [impOfSubs LListD_Fun_mono]) 2);
-by (Force_tac 1);
-qed "llistD_Fun_mono";
-
-(** To show two llists are equal, exhibit a bisimulation! 
-      [also admits true equality] **)
-Goalw [llistD_Fun_def]
-    "[| (l1,l2) : r;  r <= llistD_Fun(r Un range(%x.(x,x))) |] ==> l1=l2";
-by (rtac (thm "Rep_LList_inject" RS iffD1) 1);
-by (res_inst_tac [("r", "prod_fun Rep_LList Rep_LList `r"),
-                  ("A", "range(Leaf)")] 
-        LList_equalityI 1);
-by (etac prod_fun_imageI 1);
-by (etac (image_mono RS subset_trans) 1);
-by (rtac (image_compose RS subst) 1);
-by (rtac (prod_fun_compose RS subst) 1);
-by (stac image_Un 1);
-by (stac prod_fun_range_eq_diag 1);
-by (rtac (LListD_Fun_subset_Times_llist RS prod_fun_lemma) 1);
-by (rtac (subset_Times_llist RS Un_least) 1);
-by (rtac diag_subset_Times 1);
-qed "llist_equalityI";
-
-(** Rules to prove the 2nd premise of llist_equalityI **)
-Goalw [llistD_Fun_def,LNil_def] "(LNil,LNil) : llistD_Fun(r)";
-by (rtac (LListD_Fun_NIL_I RS prod_fun_imageI) 1);
-qed "llistD_Fun_LNil_I";
-
-Goalw [llistD_Fun_def,LCons_def]
-    "(l1,l2):r ==> (LCons x l1, LCons x l2) : llistD_Fun(r)";
-by (rtac (rangeI RS LListD_Fun_CONS_I RS prod_fun_imageI) 1);
-by (etac prod_fun_imageI 1);
-qed "llistD_Fun_LCons_I";
-
-(*Utilise the "strong" part, i.e. gfp(f)*)
-Goalw [llistD_Fun_def] "(l,l) : llistD_Fun(r Un range(%x.(x,x)))";
-by (rtac (Rep_LList_inverse RS subst) 1);
-by (rtac prod_fun_imageI 1);
-by (stac image_Un 1);
-by (stac prod_fun_range_eq_diag 1);
-by (rtac (Rep_LList RS LListD RS LListD_Fun_diag_I) 1);
-qed "llistD_Fun_range_I";
-
-(*A special case of list_equality for functions over lazy lists*)
-val [prem1,prem2] =
-Goal "[| f(LNil)=g(LNil);                                                \
-\        !!x l. (f(LCons x l),g(LCons x l)) :                            \
-\               llistD_Fun(range(%u. (f(u),g(u))) Un range(%v. (v,v)))   \
-\     |] ==> f(l) = (g(l :: 'a llist) :: 'b llist)";
-by (res_inst_tac [("r", "range(%u. (f(u),g(u)))")] llist_equalityI 1);
-by (rtac rangeI 1);
-by (rtac subsetI 1);
-by (etac rangeE 1);
-by (etac ssubst 1);
-by (res_inst_tac [("l", "u")] llistE 1);
-by (etac ssubst 1);
-by (stac prem1 1);
-by (rtac llistD_Fun_range_I 1);
-by (etac ssubst 1);
-by (rtac prem2 1);
-qed "llist_fun_equalityI";
-
-(*simpset for llist bisimulations*)
-Addsimps [llist_case_LNil, llist_case_LCons, 
-          llistD_Fun_LNil_I, llistD_Fun_LCons_I];
-
-
-(*** The functional "lmap" ***)
-
-Goal "lmap f LNil = LNil";
-by (rtac (lmap_def RS def_llist_corec RS trans) 1);
-by (Simp_tac 1);
-qed "lmap_LNil";
-
-Goal "lmap f (LCons M N) = LCons (f M) (lmap f N)";
-by (rtac (lmap_def RS def_llist_corec RS trans) 1);
-by (Simp_tac 1);
-qed "lmap_LCons";
-
-Addsimps [lmap_LNil, lmap_LCons];
-
-
-(** Two easy results about lmap **)
-
-Goal "lmap (f o g) l = lmap f (lmap g l)";
-by (res_inst_tac [("l","l")] llist_fun_equalityI 1);
-by (ALLGOALS Simp_tac);
-qed "lmap_compose";
-
-Goal "lmap (%x. x) l = l";
-by (res_inst_tac [("l","l")] llist_fun_equalityI 1);
-by (ALLGOALS Simp_tac);
-qed "lmap_ident";
-
-
-(*** iterates -- llist_fun_equalityI cannot be used! ***)
-
-Goal "iterates f x = LCons x (iterates f (f x))";
-by (rtac (iterates_def RS def_llist_corec RS trans) 1);
-by (Simp_tac 1);
-qed "iterates";
-
-Goal "lmap f (iterates f x) = iterates f (f x)";
-by (res_inst_tac [("r", "range(%u.(lmap f (iterates f u),iterates f (f u)))")] 
-    llist_equalityI 1);
-by (rtac rangeI 1);
-by Safe_tac;
-by (res_inst_tac [("x1", "f(u)")] (iterates RS ssubst) 1);
-by (res_inst_tac [("x1", "u")] (iterates RS ssubst) 1);
-by (Simp_tac 1);
-qed "lmap_iterates";
-
-Goal "iterates f x = LCons x (lmap f (iterates f x))";
-by (stac lmap_iterates 1);
-by (rtac iterates 1);
-qed "iterates_lmap";
-
-(*** A rather complex proof about iterates -- cf Andy Pitts ***)
-
-(** Two lemmas about natrec n x (%m.g), which is essentially (g^n)(x) **)
-
-Goal "nat_rec (LCons b l) (%m. lmap(f)) n =      \
-\    LCons (nat_rec b (%m. f) n) (nat_rec l (%m. lmap(f)) n)";
-by (induct_tac "n" 1);
-by (ALLGOALS Asm_simp_tac);
-qed "fun_power_lmap";
-
-goal Nat.thy "nat_rec (g x) (%m. g) n = nat_rec x (%m. g) (Suc n)";
-by (induct_tac "n" 1);
-by (ALLGOALS Asm_simp_tac);
-qed "fun_power_Suc";
-
-val Pair_cong = read_instantiate_sg (sign_of (theory "Product_Type"))
- [("f","Pair")] (standard(refl RS cong RS cong));
-
-(*The bisimulation consists of {(lmap(f)^n (h(u)), lmap(f)^n (iterates(f,u)))}
-  for all u and all n::nat.*)
-val [prem] = Goal "(!!x. h(x) = LCons x (lmap f (h x))) ==> h = iterates(f)";
-by (rtac ext 1);
-by (res_inst_tac [("r", 
-   "UN u. range(%n. (nat_rec (h u) (%m y. lmap f y) n, \
-\                    nat_rec (iterates f u) (%m y. lmap f y) n))")] 
-    llist_equalityI 1);
-by (REPEAT (resolve_tac [UN1_I, range_eqI, Pair_cong, nat_rec_0 RS sym] 1));
-by (Clarify_tac 1);
-by (stac iterates 1);
-by (stac prem 1);
-by (stac fun_power_lmap 1);
-by (stac fun_power_lmap 1);
-by (rtac llistD_Fun_LCons_I 1);
-by (rtac (lmap_iterates RS subst) 1);
-by (stac fun_power_Suc 1);
-by (stac fun_power_Suc 1);
-by (rtac (UN1_I RS UnI1) 1);
-by (rtac rangeI 1);
-qed "iterates_equality";
-
-
-(*** lappend -- its two arguments cause some complications! ***)
-
-Goalw [lappend_def] "lappend LNil LNil = LNil";
-by (rtac (llist_corec RS trans) 1);
-by (Simp_tac 1);
-qed "lappend_LNil_LNil";
-
-Goalw [lappend_def]
-    "lappend LNil (LCons l l') = LCons l (lappend LNil l')";
-by (rtac (llist_corec RS trans) 1);
-by (Simp_tac 1);
-qed "lappend_LNil_LCons";
-
-Goalw [lappend_def]
-    "lappend (LCons l l') N = LCons l (lappend l' N)";
-by (rtac (llist_corec RS trans) 1);
-by (Simp_tac 1);
-qed "lappend_LCons";
-
-Addsimps [lappend_LNil_LNil, lappend_LNil_LCons, lappend_LCons];
-
-Goal "lappend LNil l = l";
-by (res_inst_tac [("l","l")] llist_fun_equalityI 1);
-by (ALLGOALS Simp_tac);
-qed "lappend_LNil";
-
-Goal "lappend l LNil = l";
-by (res_inst_tac [("l","l")] llist_fun_equalityI 1);
-by (ALLGOALS Simp_tac);
-qed "lappend_LNil2";
-
-Addsimps [lappend_LNil, lappend_LNil2];
-
-(*The infinite first argument blocks the second*)
-Goal "lappend (iterates f x) N = iterates f x";
-by (res_inst_tac [("r", "range(%u.(lappend (iterates f u) N,iterates f u))")] 
-    llist_equalityI 1);
-by (rtac rangeI 1);
-by Safe_tac;
-by (stac iterates 1);
-by (Simp_tac 1);
-qed "lappend_iterates";
-
-(** Two proofs that lmap distributes over lappend **)
-
-(*Long proof requiring case analysis on both both arguments*)
-Goal "lmap f (lappend l n) = lappend (lmap f l) (lmap f n)";
-by (res_inst_tac 
-    [("r",  
-      "UN n. range(%l.(lmap f (lappend l n),lappend (lmap f l) (lmap f n)))")] 
-    llist_equalityI 1);
-by (rtac UN1_I 1);
-by (rtac rangeI 1);
-by Safe_tac;
-by (res_inst_tac [("l", "l")] llistE 1);
-by (res_inst_tac [("l", "n")] llistE 1);
-by (ALLGOALS Asm_simp_tac);
-by (REPEAT_SOME (ares_tac [llistD_Fun_LCons_I, UN1_I RS UnI1, rangeI]));
-qed "lmap_lappend_distrib";
-
-(*Shorter proof of theorem above using llist_equalityI as strong coinduction*)
-Goal "lmap f (lappend l n) = lappend (lmap f l) (lmap f n)";
-by (res_inst_tac [("l","l")] llist_fun_equalityI 1);
-by (Simp_tac 1);
-by (Simp_tac 1);
-qed "lmap_lappend_distrib";
-
-(*Without strong coinduction, three case analyses might be needed*)
-Goal "lappend (lappend l1 l2) l3 = lappend l1 (lappend l2 l3)";
-by (res_inst_tac [("l","l1")] llist_fun_equalityI 1);
-by (Simp_tac 1);
-by (Simp_tac 1);
-qed "lappend_assoc";