--- a/src/HOL/Hyperreal/HyperPow.thy Sat Dec 16 20:23:45 2006 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,252 +0,0 @@
-(* Title : HyperPow.thy
- Author : Jacques D. Fleuriot
- Copyright : 1998 University of Cambridge
- Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
-*)
-
-header{*Exponentials on the Hyperreals*}
-
-theory HyperPow
-imports HyperArith HyperNat Parity
-begin
-
-(* consts hpowr :: "[hypreal,nat] => hypreal" *)
-
-lemma hpowr_0 [simp]: "r ^ 0 = (1::hypreal)"
-by (rule power_0)
-
-lemma hpowr_Suc [simp]: "r ^ (Suc n) = (r::hypreal) * (r ^ n)"
-by (rule power_Suc)
-
-definition
- (* hypernatural powers of hyperreals *)
- pow :: "['a::power star, nat star] \<Rightarrow> 'a star" (infixr "pow" 80) where
- hyperpow_def [transfer_unfold]:
- "R pow N = ( *f2* op ^) R N"
-
-lemma hrealpow_two: "(r::hypreal) ^ Suc (Suc 0) = r * r"
-by simp
-
-lemma hrealpow_two_le [simp]: "(0::hypreal) \<le> r ^ Suc (Suc 0)"
-by (auto simp add: zero_le_mult_iff)
-
-lemma hrealpow_two_le_add_order [simp]:
- "(0::hypreal) \<le> u ^ Suc (Suc 0) + v ^ Suc (Suc 0)"
-by (simp only: hrealpow_two_le add_nonneg_nonneg)
-
-lemma hrealpow_two_le_add_order2 [simp]:
- "(0::hypreal) \<le> u ^ Suc (Suc 0) + v ^ Suc (Suc 0) + w ^ Suc (Suc 0)"
-by (simp only: hrealpow_two_le add_nonneg_nonneg)
-
-lemma hypreal_add_nonneg_eq_0_iff:
- "[| 0 \<le> x; 0 \<le> y |] ==> (x+y = 0) = (x = 0 & y = (0::hypreal))"
-by arith
-
-
-text{*FIXME: DELETE THESE*}
-lemma hypreal_three_squares_add_zero_iff:
- "(x*x + y*y + z*z = 0) = (x = 0 & y = 0 & z = (0::hypreal))"
-apply (simp only: zero_le_square add_nonneg_nonneg hypreal_add_nonneg_eq_0_iff, auto)
-done
-
-lemma hrealpow_three_squares_add_zero_iff [simp]:
- "(x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + z ^ Suc (Suc 0) = (0::hypreal)) =
- (x = 0 & y = 0 & z = 0)"
-by (simp only: hypreal_three_squares_add_zero_iff hrealpow_two)
-
-(*FIXME: This and RealPow.abs_realpow_two should be replaced by an abstract
- result proved in Ring_and_Field*)
-lemma hrabs_hrealpow_two [simp]:
- "abs(x ^ Suc (Suc 0)) = (x::hypreal) ^ Suc (Suc 0)"
-by (simp add: abs_mult)
-
-lemma two_hrealpow_ge_one [simp]: "(1::hypreal) \<le> 2 ^ n"
-by (insert power_increasing [of 0 n "2::hypreal"], simp)
-
-lemma two_hrealpow_gt [simp]: "hypreal_of_nat n < 2 ^ n"
-apply (induct_tac "n")
-apply (auto simp add: left_distrib)
-apply (cut_tac n = n in two_hrealpow_ge_one, arith)
-done
-
-lemma hrealpow:
- "star_n X ^ m = star_n (%n. (X n::real) ^ m)"
-apply (induct_tac "m")
-apply (auto simp add: star_n_one_num star_n_mult power_0)
-done
-
-lemma hrealpow_sum_square_expand:
- "(x + (y::hypreal)) ^ Suc (Suc 0) =
- x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + (hypreal_of_nat (Suc (Suc 0)))*x*y"
-by (simp add: right_distrib left_distrib)
-
-
-subsection{*Literal Arithmetic Involving Powers and Type @{typ hypreal}*}
-
-lemma power_hypreal_of_real_number_of:
- "(number_of v :: hypreal) ^ n = hypreal_of_real ((number_of v) ^ n)"
-by simp
-declare power_hypreal_of_real_number_of [of _ "number_of w", standard, simp]
-
-lemma hrealpow_HFinite:
- fixes x :: "'a::{real_normed_algebra,recpower} star"
- shows "x \<in> HFinite ==> x ^ n \<in> HFinite"
-apply (induct_tac "n")
-apply (auto simp add: power_Suc intro: HFinite_mult)
-done
-
-
-subsection{*Powers with Hypernatural Exponents*}
-
-lemma hyperpow: "star_n X pow star_n Y = star_n (%n. X n ^ Y n)"
-by (simp add: hyperpow_def starfun2_star_n)
-
-lemma hyperpow_zero [simp]:
- "\<And>n. (0::'a::{recpower,semiring_0} star) pow (n + (1::hypnat)) = 0"
-by transfer simp
-
-lemma hyperpow_not_zero:
- "\<And>r n. r \<noteq> (0::'a::{recpower,field} star) ==> r pow n \<noteq> 0"
-by transfer (rule field_power_not_zero)
-
-lemma hyperpow_inverse:
- "\<And>r n. r \<noteq> (0::'a::{recpower,division_by_zero,field} star)
- \<Longrightarrow> inverse (r pow n) = (inverse r) pow n"
-by transfer (rule power_inverse)
-
-lemma hyperpow_hrabs:
- "\<And>r n. abs (r::'a::{recpower,ordered_idom} star) pow n = abs (r pow n)"
-by transfer (rule power_abs [symmetric])
-
-lemma hyperpow_add:
- "\<And>r n m. (r::'a::recpower star) pow (n + m) = (r pow n) * (r pow m)"
-by transfer (rule power_add)
-
-lemma hyperpow_one [simp]:
- "\<And>r. (r::'a::recpower star) pow (1::hypnat) = r"
-by transfer (rule power_one_right)
-
-lemma hyperpow_two:
- "\<And>r. (r::'a::recpower star) pow ((1::hypnat) + (1::hypnat)) = r * r"
-by transfer (simp add: power_Suc)
-
-lemma hyperpow_gt_zero:
- "\<And>r n. (0::'a::{recpower,ordered_semidom} star) < r \<Longrightarrow> 0 < r pow n"
-by transfer (rule zero_less_power)
-
-lemma hyperpow_ge_zero:
- "\<And>r n. (0::'a::{recpower,ordered_semidom} star) \<le> r \<Longrightarrow> 0 \<le> r pow n"
-by transfer (rule zero_le_power)
-
-lemma hyperpow_le:
- "\<And>x y n. \<lbrakk>(0::'a::{recpower,ordered_semidom} star) < x; x \<le> y\<rbrakk>
- \<Longrightarrow> x pow n \<le> y pow n"
-by transfer (rule power_mono [OF _ order_less_imp_le])
-
-lemma hyperpow_eq_one [simp]:
- "\<And>n. 1 pow n = (1::'a::recpower star)"
-by transfer (rule power_one)
-
-lemma hrabs_hyperpow_minus_one [simp]:
- "\<And>n. abs(-1 pow n) = (1::'a::{number_ring,recpower,ordered_idom} star)"
-by transfer (rule abs_power_minus_one)
-
-lemma hyperpow_mult:
- "\<And>r s n. (r * s::'a::{comm_monoid_mult,recpower} star) pow n
- = (r pow n) * (s pow n)"
-by transfer (rule power_mult_distrib)
-
-lemma hyperpow_two_le [simp]:
- "(0::'a::{recpower,ordered_ring_strict} star) \<le> r pow (1 + 1)"
-by (auto simp add: hyperpow_two zero_le_mult_iff)
-
-lemma hrabs_hyperpow_two [simp]:
- "abs(x pow (1 + 1)) =
- (x::'a::{recpower,ordered_ring_strict} star) pow (1 + 1)"
-by (simp only: abs_of_nonneg hyperpow_two_le)
-
-lemma hyperpow_two_hrabs [simp]:
- "abs(x::'a::{recpower,ordered_idom} star) pow (1 + 1) = x pow (1 + 1)"
-by (simp add: hyperpow_hrabs)
-
-text{*The precondition could be weakened to @{term "0\<le>x"}*}
-lemma hypreal_mult_less_mono:
- "[| u<v; x<y; (0::hypreal) < v; 0 < x |] ==> u*x < v* y"
- by (simp add: Ring_and_Field.mult_strict_mono order_less_imp_le)
-
-lemma hyperpow_two_gt_one:
- "\<And>r::'a::{recpower,ordered_semidom} star. 1 < r \<Longrightarrow> 1 < r pow (1 + 1)"
-by transfer (simp add: power_gt1)
-
-lemma hyperpow_two_ge_one:
- "\<And>r::'a::{recpower,ordered_semidom} star. 1 \<le> r \<Longrightarrow> 1 \<le> r pow (1 + 1)"
-by transfer (simp add: one_le_power)
-
-lemma two_hyperpow_ge_one [simp]: "(1::hypreal) \<le> 2 pow n"
-apply (rule_tac y = "1 pow n" in order_trans)
-apply (rule_tac [2] hyperpow_le, auto)
-done
-
-lemma hyperpow_minus_one2 [simp]:
- "!!n. -1 pow ((1 + 1)*n) = (1::hypreal)"
-by transfer (simp)
-
-lemma hyperpow_less_le:
- "!!r n N. [|(0::hypreal) \<le> r; r \<le> 1; n < N|] ==> r pow N \<le> r pow n"
-by transfer (rule power_decreasing [OF order_less_imp_le])
-
-lemma hyperpow_SHNat_le:
- "[| 0 \<le> r; r \<le> (1::hypreal); N \<in> HNatInfinite |]
- ==> ALL n: Nats. r pow N \<le> r pow n"
-by (auto intro!: hyperpow_less_le simp add: HNatInfinite_iff)
-
-lemma hyperpow_realpow:
- "(hypreal_of_real r) pow (hypnat_of_nat n) = hypreal_of_real (r ^ n)"
-by transfer (rule refl)
-
-lemma hyperpow_SReal [simp]:
- "(hypreal_of_real r) pow (hypnat_of_nat n) \<in> Reals"
-by (simp del: star_of_power add: hyperpow_realpow SReal_def)
-
-
-lemma hyperpow_zero_HNatInfinite [simp]:
- "N \<in> HNatInfinite ==> (0::hypreal) pow N = 0"
-by (drule HNatInfinite_is_Suc, auto)
-
-lemma hyperpow_le_le:
- "[| (0::hypreal) \<le> r; r \<le> 1; n \<le> N |] ==> r pow N \<le> r pow n"
-apply (drule order_le_less [of n, THEN iffD1])
-apply (auto intro: hyperpow_less_le)
-done
-
-lemma hyperpow_Suc_le_self2:
- "[| (0::hypreal) \<le> r; r < 1 |] ==> r pow (n + (1::hypnat)) \<le> r"
-apply (drule_tac n = " (1::hypnat) " in hyperpow_le_le)
-apply auto
-done
-
-lemma lemma_Infinitesimal_hyperpow:
- "[| (x::hypreal) \<in> Infinitesimal; 0 < N |] ==> abs (x pow N) \<le> abs x"
-apply (unfold Infinitesimal_def)
-apply (auto intro!: hyperpow_Suc_le_self2
- simp add: hyperpow_hrabs [symmetric] hypnat_gt_zero_iff2 abs_ge_zero)
-done
-
-lemma Infinitesimal_hyperpow:
- "[| (x::hypreal) \<in> Infinitesimal; 0 < N |] ==> x pow N \<in> Infinitesimal"
-apply (rule hrabs_le_Infinitesimal)
-apply (rule_tac [2] lemma_Infinitesimal_hyperpow, auto)
-done
-
-lemma hyperpow_hypnat_of_nat: "\<And>x. x pow hypnat_of_nat n = x ^ n"
-by transfer (rule refl)
-
-lemma hrealpow_hyperpow_Infinitesimal_iff:
- "(x ^ n \<in> Infinitesimal) = (x pow (hypnat_of_nat n) \<in> Infinitesimal)"
-by (simp only: hyperpow_hypnat_of_nat)
-
-lemma Infinitesimal_hrealpow:
- "[| (x::hypreal) \<in> Infinitesimal; 0 < n |] ==> x ^ n \<in> Infinitesimal"
-by (simp add: hrealpow_hyperpow_Infinitesimal_iff Infinitesimal_hyperpow)
-
-end