src/HOL/HoareParallel/Graph.thy
changeset 32623 d84b1b0077ae
parent 32622 8ed38c7bd21a
parent 32621 a073cb249a06
child 32625 f270520df7de
--- a/src/HOL/HoareParallel/Graph.thy	Mon Sep 21 11:15:21 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,410 +0,0 @@
-header {* \chapter{Case Study: Single and Multi-Mutator Garbage Collection Algorithms}
-
-\section {Formalization of the Memory} *}
-
-theory Graph imports Main begin
-
-datatype node = Black | White
-
-types 
-  nodes = "node list"
-  edge  = "nat \<times> nat"
-  edges = "edge list"
-
-consts Roots :: "nat set"
-
-constdefs
-  Proper_Roots :: "nodes \<Rightarrow> bool"
-  "Proper_Roots M \<equiv> Roots\<noteq>{} \<and> Roots \<subseteq> {i. i<length M}"
-
-  Proper_Edges :: "(nodes \<times> edges) \<Rightarrow> bool"
-  "Proper_Edges \<equiv> (\<lambda>(M,E). \<forall>i<length E. fst(E!i)<length M \<and> snd(E!i)<length M)"
-
-  BtoW :: "(edge \<times> nodes) \<Rightarrow> bool"
-  "BtoW \<equiv> (\<lambda>(e,M). (M!fst e)=Black \<and> (M!snd e)\<noteq>Black)"
-
-  Blacks :: "nodes \<Rightarrow> nat set"
-  "Blacks M \<equiv> {i. i<length M \<and> M!i=Black}"
-
-  Reach :: "edges \<Rightarrow> nat set"
-  "Reach E \<equiv> {x. (\<exists>path. 1<length path \<and> path!(length path - 1)\<in>Roots \<and> x=path!0
-              \<and> (\<forall>i<length path - 1. (\<exists>j<length E. E!j=(path!(i+1), path!i))))
-	      \<or> x\<in>Roots}"
-
-text{* Reach: the set of reachable nodes is the set of Roots together with the
-nodes reachable from some Root by a path represented by a list of
-  nodes (at least two since we traverse at least one edge), where two
-consecutive nodes correspond to an edge in E. *}
-
-subsection {* Proofs about Graphs *}
-
-lemmas Graph_defs= Blacks_def Proper_Roots_def Proper_Edges_def BtoW_def
-declare Graph_defs [simp]
-
-subsubsection{* Graph 1 *}
-
-lemma Graph1_aux [rule_format]: 
-  "\<lbrakk> Roots\<subseteq>Blacks M; \<forall>i<length E. \<not>BtoW(E!i,M)\<rbrakk>
-  \<Longrightarrow> 1< length path \<longrightarrow> (path!(length path - 1))\<in>Roots \<longrightarrow>  
-  (\<forall>i<length path - 1. (\<exists>j. j < length E \<and> E!j=(path!(Suc i), path!i))) 
-  \<longrightarrow> M!(path!0) = Black"
-apply(induct_tac "path")
- apply force
-apply clarify
-apply simp
-apply(case_tac "list")
- apply force
-apply simp
-apply(rotate_tac -2)
-apply(erule_tac x = "0" in all_dupE)
-apply simp
-apply clarify
-apply(erule allE , erule (1) notE impE)
-apply simp
-apply(erule mp)
-apply(case_tac "lista")
- apply force
-apply simp
-apply(erule mp)
-apply clarify
-apply(erule_tac x = "Suc i" in allE)
-apply force
-done
-
-lemma Graph1: 
-  "\<lbrakk>Roots\<subseteq>Blacks M; Proper_Edges(M, E); \<forall>i<length E. \<not>BtoW(E!i,M) \<rbrakk> 
-  \<Longrightarrow> Reach E\<subseteq>Blacks M"
-apply (unfold Reach_def)
-apply simp
-apply clarify
-apply(erule disjE)
- apply clarify
- apply(rule conjI)
-  apply(subgoal_tac "0< length path - Suc 0")
-   apply(erule allE , erule (1) notE impE)
-   apply force
-  apply simp
- apply(rule Graph1_aux)
-apply auto
-done
-
-subsubsection{* Graph 2 *}
-
-lemma Ex_first_occurrence [rule_format]: 
-  "P (n::nat) \<longrightarrow> (\<exists>m. P m \<and> (\<forall>i. i<m \<longrightarrow> \<not> P i))";
-apply(rule nat_less_induct)
-apply clarify
-apply(case_tac "\<forall>m. m<n \<longrightarrow> \<not> P m")
-apply auto
-done
-
-lemma Compl_lemma: "(n::nat)\<le>l \<Longrightarrow> (\<exists>m. m\<le>l \<and> n=l - m)"
-apply(rule_tac x = "l - n" in exI)
-apply arith
-done
-
-lemma Ex_last_occurrence: 
-  "\<lbrakk>P (n::nat); n\<le>l\<rbrakk> \<Longrightarrow> (\<exists>m. P (l - m) \<and> (\<forall>i. i<m \<longrightarrow> \<not>P (l - i)))"
-apply(drule Compl_lemma)
-apply clarify
-apply(erule Ex_first_occurrence)
-done
-
-lemma Graph2: 
-  "\<lbrakk>T \<in> Reach E; R<length E\<rbrakk> \<Longrightarrow> T \<in> Reach (E[R:=(fst(E!R), T)])"
-apply (unfold Reach_def)
-apply clarify
-apply simp
-apply(case_tac "\<forall>z<length path. fst(E!R)\<noteq>path!z")
- apply(rule_tac x = "path" in exI)
- apply simp
- apply clarify
- apply(erule allE , erule (1) notE impE)
- apply clarify
- apply(rule_tac x = "j" in exI)
- apply(case_tac "j=R")
-  apply(erule_tac x = "Suc i" in allE)
-  apply simp
- apply (force simp add:nth_list_update)
-apply simp
-apply(erule exE)
-apply(subgoal_tac "z \<le> length path - Suc 0")
- prefer 2 apply arith
-apply(drule_tac P = "\<lambda>m. m<length path \<and> fst(E!R)=path!m" in Ex_last_occurrence)
- apply assumption
-apply clarify
-apply simp
-apply(rule_tac x = "(path!0)#(drop (length path - Suc m) path)" in exI)
-apply simp
-apply(case_tac "length path - (length path - Suc m)")
- apply arith
-apply simp
-apply(subgoal_tac "(length path - Suc m) + nat \<le> length path")
- prefer 2 apply arith
-apply(drule nth_drop)
-apply simp
-apply(subgoal_tac "length path - Suc m + nat = length path - Suc 0")
- prefer 2 apply arith 
-apply simp
-apply clarify
-apply(case_tac "i")
- apply(force simp add: nth_list_update)
-apply simp
-apply(subgoal_tac "(length path - Suc m) + nata \<le> length path")
- prefer 2 apply arith
-apply(subgoal_tac "(length path - Suc m) + (Suc nata) \<le> length path")
- prefer 2 apply arith
-apply simp
-apply(erule_tac x = "length path - Suc m + nata" in allE)
-apply simp
-apply clarify
-apply(rule_tac x = "j" in exI)
-apply(case_tac "R=j")
- prefer 2 apply force
-apply simp
-apply(drule_tac t = "path ! (length path - Suc m)" in sym)
-apply simp
-apply(case_tac " length path - Suc 0 < m")
- apply(subgoal_tac "(length path - Suc m)=0")
-  prefer 2 apply arith
- apply(simp del: diff_is_0_eq)
- apply(subgoal_tac "Suc nata\<le>nat")
- prefer 2 apply arith
- apply(drule_tac n = "Suc nata" in Compl_lemma)
- apply clarify
- using [[linarith_split_limit = 0]]
- apply force
- using [[linarith_split_limit = 9]]
-apply(drule leI)
-apply(subgoal_tac "Suc (length path - Suc m + nata)=(length path - Suc 0) - (m - Suc nata)")
- apply(erule_tac x = "m - (Suc nata)" in allE)
- apply(case_tac "m")
-  apply simp
- apply simp
-apply simp
-done
-
-
-subsubsection{* Graph 3 *}
-
-lemma Graph3: 
-  "\<lbrakk> T\<in>Reach E; R<length E \<rbrakk> \<Longrightarrow> Reach(E[R:=(fst(E!R),T)]) \<subseteq> Reach E"
-apply (unfold Reach_def)
-apply clarify
-apply simp
-apply(case_tac "\<exists>i<length path - 1. (fst(E!R),T)=(path!(Suc i),path!i)")
---{* the changed edge is part of the path *}
- apply(erule exE)
- apply(drule_tac P = "\<lambda>i. i<length path - 1 \<and> (fst(E!R),T)=(path!Suc i,path!i)" in Ex_first_occurrence)
- apply clarify
- apply(erule disjE)
---{* T is NOT a root *}
-  apply clarify
-  apply(rule_tac x = "(take m path)@patha" in exI)
-  apply(subgoal_tac "\<not>(length path\<le>m)")
-   prefer 2 apply arith
-  apply(simp)
-  apply(rule conjI)
-   apply(subgoal_tac "\<not>(m + length patha - 1 < m)")
-    prefer 2 apply arith
-   apply(simp add: nth_append)
-  apply(rule conjI)
-   apply(case_tac "m")
-    apply force
-   apply(case_tac "path")
-    apply force
-   apply force
-  apply clarify
-  apply(case_tac "Suc i\<le>m")
-   apply(erule_tac x = "i" in allE)
-   apply simp
-   apply clarify
-   apply(rule_tac x = "j" in exI)
-   apply(case_tac "Suc i<m")
-    apply(simp add: nth_append)
-    apply(case_tac "R=j")
-     apply(simp add: nth_list_update)
-     apply(case_tac "i=m")
-      apply force
-     apply(erule_tac x = "i" in allE)
-     apply force
-    apply(force simp add: nth_list_update)
-   apply(simp add: nth_append)
-   apply(subgoal_tac "i=m - 1")
-    prefer 2 apply arith
-   apply(case_tac "R=j")
-    apply(erule_tac x = "m - 1" in allE)
-    apply(simp add: nth_list_update)
-   apply(force simp add: nth_list_update)
-  apply(simp add: nth_append)
-  apply(rotate_tac -4)
-  apply(erule_tac x = "i - m" in allE)
-  apply(subgoal_tac "Suc (i - m)=(Suc i - m)" )
-    prefer 2 apply arith
-   apply simp
---{* T is a root *}
- apply(case_tac "m=0")
-  apply force
- apply(rule_tac x = "take (Suc m) path" in exI)
- apply(subgoal_tac "\<not>(length path\<le>Suc m)" )
-  prefer 2 apply arith
- apply clarsimp
- apply(erule_tac x = "i" in allE)
- apply simp
- apply clarify
- apply(case_tac "R=j")
-  apply(force simp add: nth_list_update)
- apply(force simp add: nth_list_update)
---{* the changed edge is not part of the path *}
-apply(rule_tac x = "path" in exI)
-apply simp
-apply clarify
-apply(erule_tac x = "i" in allE)
-apply clarify
-apply(case_tac "R=j")
- apply(erule_tac x = "i" in allE)
- apply simp
-apply(force simp add: nth_list_update)
-done
-
-subsubsection{* Graph 4 *}
-
-lemma Graph4: 
-  "\<lbrakk>T \<in> Reach E; Roots\<subseteq>Blacks M; I\<le>length E; T<length M; R<length E; 
-  \<forall>i<I. \<not>BtoW(E!i,M); R<I; M!fst(E!R)=Black; M!T\<noteq>Black\<rbrakk> \<Longrightarrow> 
-  (\<exists>r. I\<le>r \<and> r<length E \<and> BtoW(E[R:=(fst(E!R),T)]!r,M))"
-apply (unfold Reach_def)
-apply simp
-apply(erule disjE)
- prefer 2 apply force
-apply clarify
---{* there exist a black node in the path to T *}
-apply(case_tac "\<exists>m<length path. M!(path!m)=Black")
- apply(erule exE)
- apply(drule_tac P = "\<lambda>m. m<length path \<and> M!(path!m)=Black" in Ex_first_occurrence)
- apply clarify
- apply(case_tac "ma")
-  apply force
- apply simp
- apply(case_tac "length path")
-  apply force
- apply simp
- apply(erule_tac P = "\<lambda>i. i < nata \<longrightarrow> ?P i" and x = "nat" in allE)
- apply simp
- apply clarify
- apply(erule_tac P = "\<lambda>i. i < Suc nat \<longrightarrow> ?P i" and x = "nat" in allE)
- apply simp
- apply(case_tac "j<I")
-  apply(erule_tac x = "j" in allE)
-  apply force
- apply(rule_tac x = "j" in exI)
- apply(force  simp add: nth_list_update)
-apply simp
-apply(rotate_tac -1)
-apply(erule_tac x = "length path - 1" in allE)
-apply(case_tac "length path")
- apply force
-apply force
-done
-
-subsubsection {* Graph 5 *}
-
-lemma Graph5: 
-  "\<lbrakk> T \<in> Reach E ; Roots \<subseteq> Blacks M; \<forall>i<R. \<not>BtoW(E!i,M); T<length M; 
-    R<length E; M!fst(E!R)=Black; M!snd(E!R)=Black; M!T \<noteq> Black\<rbrakk> 
-   \<Longrightarrow> (\<exists>r. R<r \<and> r<length E \<and> BtoW(E[R:=(fst(E!R),T)]!r,M))"
-apply (unfold Reach_def)
-apply simp
-apply(erule disjE)
- prefer 2 apply force
-apply clarify
---{* there exist a black node in the path to T*}
-apply(case_tac "\<exists>m<length path. M!(path!m)=Black")
- apply(erule exE)
- apply(drule_tac P = "\<lambda>m. m<length path \<and> M!(path!m)=Black" in Ex_first_occurrence)
- apply clarify
- apply(case_tac "ma")
-  apply force
- apply simp
- apply(case_tac "length path")
-  apply force
- apply simp
- apply(erule_tac P = "\<lambda>i. i < nata \<longrightarrow> ?P i" and x = "nat" in allE)
- apply simp
- apply clarify
- apply(erule_tac P = "\<lambda>i. i < Suc nat \<longrightarrow> ?P i" and x = "nat" in allE)
- apply simp
- apply(case_tac "j\<le>R")
-  apply(drule le_imp_less_or_eq [of _ R])
-  apply(erule disjE)
-   apply(erule allE , erule (1) notE impE)
-   apply force
-  apply force
- apply(rule_tac x = "j" in exI)
- apply(force  simp add: nth_list_update)
-apply simp
-apply(rotate_tac -1)
-apply(erule_tac x = "length path - 1" in allE)
-apply(case_tac "length path")
- apply force
-apply force
-done
-
-subsubsection {* Other lemmas about graphs *}
-
-lemma Graph6: 
- "\<lbrakk>Proper_Edges(M,E); R<length E ; T<length M\<rbrakk> \<Longrightarrow> Proper_Edges(M,E[R:=(fst(E!R),T)])"
-apply (unfold Proper_Edges_def)
- apply(force  simp add: nth_list_update)
-done
-
-lemma Graph7: 
- "\<lbrakk>Proper_Edges(M,E)\<rbrakk> \<Longrightarrow> Proper_Edges(M[T:=a],E)"
-apply (unfold Proper_Edges_def)
-apply force
-done
-
-lemma Graph8: 
- "\<lbrakk>Proper_Roots(M)\<rbrakk> \<Longrightarrow> Proper_Roots(M[T:=a])"
-apply (unfold Proper_Roots_def)
-apply force
-done
-
-text{* Some specific lemmata for the verification of garbage collection algorithms. *}
-
-lemma Graph9: "j<length M \<Longrightarrow> Blacks M\<subseteq>Blacks (M[j := Black])"
-apply (unfold Blacks_def)
- apply(force simp add: nth_list_update)
-done
-
-lemma Graph10 [rule_format (no_asm)]: "\<forall>i. M!i=a \<longrightarrow>M[i:=a]=M"
-apply(induct_tac "M")
-apply auto
-apply(case_tac "i")
-apply auto
-done
-
-lemma Graph11 [rule_format (no_asm)]: 
-  "\<lbrakk> M!j\<noteq>Black;j<length M\<rbrakk> \<Longrightarrow> Blacks M \<subset> Blacks (M[j := Black])"
-apply (unfold Blacks_def)
-apply(rule psubsetI)
- apply(force simp add: nth_list_update)
-apply safe
-apply(erule_tac c = "j" in equalityCE)
-apply auto
-done
-
-lemma Graph12: "\<lbrakk>a\<subseteq>Blacks M;j<length M\<rbrakk> \<Longrightarrow> a\<subseteq>Blacks (M[j := Black])"
-apply (unfold Blacks_def)
-apply(force simp add: nth_list_update)
-done
-
-lemma Graph13: "\<lbrakk>a\<subset> Blacks M;j<length M\<rbrakk> \<Longrightarrow> a \<subset> Blacks (M[j := Black])"
-apply (unfold Blacks_def)
-apply(erule psubset_subset_trans)
-apply(force simp add: nth_list_update)
-done
-
-declare Graph_defs [simp del]
-
-end