src/HOL/Rat.thy
changeset 35377 d84eec579695
parent 35343 523124691b3a
parent 35375 cb06a11a7955
child 35402 115a5a95710a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Rat.thy	Fri Feb 26 10:57:35 2010 +0100
@@ -0,0 +1,1210 @@
+(*  Title:  HOL/Rat.thy
+    Author: Markus Wenzel, TU Muenchen
+*)
+
+header {* Rational numbers *}
+
+theory Rat
+imports GCD Archimedean_Field
+uses ("Tools/float_syntax.ML")
+begin
+
+subsection {* Rational numbers as quotient *}
+
+subsubsection {* Construction of the type of rational numbers *}
+
+definition
+  ratrel :: "((int \<times> int) \<times> (int \<times> int)) set" where
+  "ratrel = {(x, y). snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x}"
+
+lemma ratrel_iff [simp]:
+  "(x, y) \<in> ratrel \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x"
+  by (simp add: ratrel_def)
+
+lemma refl_on_ratrel: "refl_on {x. snd x \<noteq> 0} ratrel"
+  by (auto simp add: refl_on_def ratrel_def)
+
+lemma sym_ratrel: "sym ratrel"
+  by (simp add: ratrel_def sym_def)
+
+lemma trans_ratrel: "trans ratrel"
+proof (rule transI, unfold split_paired_all)
+  fix a b a' b' a'' b'' :: int
+  assume A: "((a, b), (a', b')) \<in> ratrel"
+  assume B: "((a', b'), (a'', b'')) \<in> ratrel"
+  have "b' * (a * b'') = b'' * (a * b')" by simp
+  also from A have "a * b' = a' * b" by auto
+  also have "b'' * (a' * b) = b * (a' * b'')" by simp
+  also from B have "a' * b'' = a'' * b'" by auto
+  also have "b * (a'' * b') = b' * (a'' * b)" by simp
+  finally have "b' * (a * b'') = b' * (a'' * b)" .
+  moreover from B have "b' \<noteq> 0" by auto
+  ultimately have "a * b'' = a'' * b" by simp
+  with A B show "((a, b), (a'', b'')) \<in> ratrel" by auto
+qed
+  
+lemma equiv_ratrel: "equiv {x. snd x \<noteq> 0} ratrel"
+  by (rule equiv.intro [OF refl_on_ratrel sym_ratrel trans_ratrel])
+
+lemmas UN_ratrel = UN_equiv_class [OF equiv_ratrel]
+lemmas UN_ratrel2 = UN_equiv_class2 [OF equiv_ratrel equiv_ratrel]
+
+lemma equiv_ratrel_iff [iff]: 
+  assumes "snd x \<noteq> 0" and "snd y \<noteq> 0"
+  shows "ratrel `` {x} = ratrel `` {y} \<longleftrightarrow> (x, y) \<in> ratrel"
+  by (rule eq_equiv_class_iff, rule equiv_ratrel) (auto simp add: assms)
+
+typedef (Rat) rat = "{x. snd x \<noteq> 0} // ratrel"
+proof
+  have "(0::int, 1::int) \<in> {x. snd x \<noteq> 0}" by simp
+  then show "ratrel `` {(0, 1)} \<in> {x. snd x \<noteq> 0} // ratrel" by (rule quotientI)
+qed
+
+lemma ratrel_in_Rat [simp]: "snd x \<noteq> 0 \<Longrightarrow> ratrel `` {x} \<in> Rat"
+  by (simp add: Rat_def quotientI)
+
+declare Abs_Rat_inject [simp] Abs_Rat_inverse [simp]
+
+
+subsubsection {* Representation and basic operations *}
+
+definition
+  Fract :: "int \<Rightarrow> int \<Rightarrow> rat" where
+  "Fract a b = Abs_Rat (ratrel `` {if b = 0 then (0, 1) else (a, b)})"
+
+lemma eq_rat:
+  shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
+  and "\<And>a. Fract a 0 = Fract 0 1"
+  and "\<And>a c. Fract 0 a = Fract 0 c"
+  by (simp_all add: Fract_def)
+
+lemma Rat_cases [case_names Fract, cases type: rat]:
+  assumes "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
+  shows C
+proof -
+  obtain a b :: int where "q = Fract a b" and "b \<noteq> 0"
+    by (cases q) (clarsimp simp add: Fract_def Rat_def quotient_def)
+  let ?a = "a div gcd a b"
+  let ?b = "b div gcd a b"
+  from `b \<noteq> 0` have "?b * gcd a b = b"
+    by (simp add: dvd_div_mult_self)
+  with `b \<noteq> 0` have "?b \<noteq> 0" by auto
+  from `q = Fract a b` `b \<noteq> 0` `?b \<noteq> 0` have q: "q = Fract ?a ?b"
+    by (simp add: eq_rat dvd_div_mult mult_commute [of a])
+  from `b \<noteq> 0` have coprime: "coprime ?a ?b"
+    by (auto intro: div_gcd_coprime_int)
+  show C proof (cases "b > 0")
+    case True
+    note assms
+    moreover note q
+    moreover from True have "?b > 0" by (simp add: nonneg1_imp_zdiv_pos_iff)
+    moreover note coprime
+    ultimately show C .
+  next
+    case False
+    note assms
+    moreover from q have "q = Fract (- ?a) (- ?b)" by (simp add: Fract_def)
+    moreover from False `b \<noteq> 0` have "- ?b > 0" by (simp add: pos_imp_zdiv_neg_iff)
+    moreover from coprime have "coprime (- ?a) (- ?b)" by simp
+    ultimately show C .
+  qed
+qed
+
+lemma Rat_induct [case_names Fract, induct type: rat]:
+  assumes "\<And>a b. b > 0 \<Longrightarrow> coprime a b \<Longrightarrow> P (Fract a b)"
+  shows "P q"
+  using assms by (cases q) simp
+
+instantiation rat :: comm_ring_1
+begin
+
+definition
+  Zero_rat_def: "0 = Fract 0 1"
+
+definition
+  One_rat_def: "1 = Fract 1 1"
+
+definition
+  add_rat_def:
+  "q + r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
+    ratrel `` {(fst x * snd y + fst y * snd x, snd x * snd y)})"
+
+lemma add_rat [simp]:
+  assumes "b \<noteq> 0" and "d \<noteq> 0"
+  shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
+proof -
+  have "(\<lambda>x y. ratrel``{(fst x * snd y + fst y * snd x, snd x * snd y)})
+    respects2 ratrel"
+  by (rule equiv_ratrel [THEN congruent2_commuteI]) (simp_all add: left_distrib)
+  with assms show ?thesis by (simp add: Fract_def add_rat_def UN_ratrel2)
+qed
+
+definition
+  minus_rat_def:
+  "- q = Abs_Rat (\<Union>x \<in> Rep_Rat q. ratrel `` {(- fst x, snd x)})"
+
+lemma minus_rat [simp]: "- Fract a b = Fract (- a) b"
+proof -
+  have "(\<lambda>x. ratrel `` {(- fst x, snd x)}) respects ratrel"
+    by (simp add: congruent_def)
+  then show ?thesis by (simp add: Fract_def minus_rat_def UN_ratrel)
+qed
+
+lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b"
+  by (cases "b = 0") (simp_all add: eq_rat)
+
+definition
+  diff_rat_def: "q - r = q + - (r::rat)"
+
+lemma diff_rat [simp]:
+  assumes "b \<noteq> 0" and "d \<noteq> 0"
+  shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
+  using assms by (simp add: diff_rat_def)
+
+definition
+  mult_rat_def:
+  "q * r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
+    ratrel``{(fst x * fst y, snd x * snd y)})"
+
+lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)"
+proof -
+  have "(\<lambda>x y. ratrel `` {(fst x * fst y, snd x * snd y)}) respects2 ratrel"
+    by (rule equiv_ratrel [THEN congruent2_commuteI]) simp_all
+  then show ?thesis by (simp add: Fract_def mult_rat_def UN_ratrel2)
+qed
+
+lemma mult_rat_cancel:
+  assumes "c \<noteq> 0"
+  shows "Fract (c * a) (c * b) = Fract a b"
+proof -
+  from assms have "Fract c c = Fract 1 1" by (simp add: Fract_def)
+  then show ?thesis by (simp add: mult_rat [symmetric])
+qed
+
+instance proof
+  fix q r s :: rat show "(q * r) * s = q * (r * s)" 
+    by (cases q, cases r, cases s) (simp add: eq_rat)
+next
+  fix q r :: rat show "q * r = r * q"
+    by (cases q, cases r) (simp add: eq_rat)
+next
+  fix q :: rat show "1 * q = q"
+    by (cases q) (simp add: One_rat_def eq_rat)
+next
+  fix q r s :: rat show "(q + r) + s = q + (r + s)"
+    by (cases q, cases r, cases s) (simp add: eq_rat algebra_simps)
+next
+  fix q r :: rat show "q + r = r + q"
+    by (cases q, cases r) (simp add: eq_rat)
+next
+  fix q :: rat show "0 + q = q"
+    by (cases q) (simp add: Zero_rat_def eq_rat)
+next
+  fix q :: rat show "- q + q = 0"
+    by (cases q) (simp add: Zero_rat_def eq_rat)
+next
+  fix q r :: rat show "q - r = q + - r"
+    by (cases q, cases r) (simp add: eq_rat)
+next
+  fix q r s :: rat show "(q + r) * s = q * s + r * s"
+    by (cases q, cases r, cases s) (simp add: eq_rat algebra_simps)
+next
+  show "(0::rat) \<noteq> 1" by (simp add: Zero_rat_def One_rat_def eq_rat)
+qed
+
+end
+
+lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
+  by (induct k) (simp_all add: Zero_rat_def One_rat_def)
+
+lemma of_int_rat: "of_int k = Fract k 1"
+  by (cases k rule: int_diff_cases) (simp add: of_nat_rat)
+
+lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k"
+  by (rule of_nat_rat [symmetric])
+
+lemma Fract_of_int_eq: "Fract k 1 = of_int k"
+  by (rule of_int_rat [symmetric])
+
+instantiation rat :: number_ring
+begin
+
+definition
+  rat_number_of_def: "number_of w = Fract w 1"
+
+instance proof
+qed (simp add: rat_number_of_def of_int_rat)
+
+end
+
+lemma rat_number_collapse:
+  "Fract 0 k = 0"
+  "Fract 1 1 = 1"
+  "Fract (number_of k) 1 = number_of k"
+  "Fract k 0 = 0"
+  by (cases "k = 0")
+    (simp_all add: Zero_rat_def One_rat_def number_of_is_id number_of_eq of_int_rat eq_rat Fract_def)
+
+lemma rat_number_expand [code_unfold]:
+  "0 = Fract 0 1"
+  "1 = Fract 1 1"
+  "number_of k = Fract (number_of k) 1"
+  by (simp_all add: rat_number_collapse)
+
+lemma iszero_rat [simp]:
+  "iszero (number_of k :: rat) \<longleftrightarrow> iszero (number_of k :: int)"
+  by (simp add: iszero_def rat_number_expand number_of_is_id eq_rat)
+
+lemma Rat_cases_nonzero [case_names Fract 0]:
+  assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b > 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> C"
+  assumes 0: "q = 0 \<Longrightarrow> C"
+  shows C
+proof (cases "q = 0")
+  case True then show C using 0 by auto
+next
+  case False
+  then obtain a b where "q = Fract a b" and "b > 0" and "coprime a b" by (cases q) auto
+  moreover with False have "0 \<noteq> Fract a b" by simp
+  with `b > 0` have "a \<noteq> 0" by (simp add: Zero_rat_def eq_rat)
+  with Fract `q = Fract a b` `b > 0` `coprime a b` show C by blast
+qed
+
+subsubsection {* Function @{text normalize} *}
+
+lemma Fract_coprime: "Fract (a div gcd a b) (b div gcd a b) = Fract a b"
+proof (cases "b = 0")
+  case True then show ?thesis by (simp add: eq_rat)
+next
+  case False
+  moreover have "b div gcd a b * gcd a b = b"
+    by (rule dvd_div_mult_self) simp
+  ultimately have "b div gcd a b \<noteq> 0" by auto
+  with False show ?thesis by (simp add: eq_rat dvd_div_mult mult_commute [of a])
+qed
+
+definition normalize :: "int \<times> int \<Rightarrow> int \<times> int" where
+  "normalize p = (if snd p > 0 then (let a = gcd (fst p) (snd p) in (fst p div a, snd p div a))
+    else if snd p = 0 then (0, 1)
+    else (let a = - gcd (fst p) (snd p) in (fst p div a, snd p div a)))"
+
+lemma normalize_crossproduct:
+  assumes "q \<noteq> 0" "s \<noteq> 0"
+  assumes "normalize (p, q) = normalize (r, s)"
+  shows "p * s = r * q"
+proof -
+  have aux: "p * gcd r s = sgn (q * s) * r * gcd p q \<Longrightarrow> q * gcd r s = sgn (q * s) * s * gcd p q \<Longrightarrow> p * s = q * r"
+  proof -
+    assume "p * gcd r s = sgn (q * s) * r * gcd p q" and "q * gcd r s = sgn (q * s) * s * gcd p q"
+    then have "(p * gcd r s) * (sgn (q * s) * s * gcd p q) = (q * gcd r s) * (sgn (q * s) * r * gcd p q)" by simp
+    with assms show "p * s = q * r" by (auto simp add: mult_ac sgn_times sgn_0_0)
+  qed
+  from assms show ?thesis
+    by (auto simp add: normalize_def Let_def dvd_div_div_eq_mult mult_commute sgn_times split: if_splits intro: aux)
+qed
+
+lemma normalize_eq: "normalize (a, b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
+  by (auto simp add: normalize_def Let_def Fract_coprime dvd_div_neg rat_number_collapse
+    split:split_if_asm)
+
+lemma normalize_denom_pos: "normalize r = (p, q) \<Longrightarrow> q > 0"
+  by (auto simp add: normalize_def Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff
+    split:split_if_asm)
+
+lemma normalize_coprime: "normalize r = (p, q) \<Longrightarrow> coprime p q"
+  by (auto simp add: normalize_def Let_def dvd_div_neg div_gcd_coprime_int
+    split:split_if_asm)
+
+lemma normalize_stable [simp]:
+  "q > 0 \<Longrightarrow> coprime p q \<Longrightarrow> normalize (p, q) = (p, q)"
+  by (simp add: normalize_def)
+
+lemma normalize_denom_zero [simp]:
+  "normalize (p, 0) = (0, 1)"
+  by (simp add: normalize_def)
+
+lemma normalize_negative [simp]:
+  "q < 0 \<Longrightarrow> normalize (p, q) = normalize (- p, - q)"
+  by (simp add: normalize_def Let_def dvd_div_neg dvd_neg_div)
+
+text{*
+  Decompose a fraction into normalized, i.e. coprime numerator and denominator:
+*}
+
+definition quotient_of :: "rat \<Rightarrow> int \<times> int" where
+  "quotient_of x = (THE pair. x = Fract (fst pair) (snd pair) &
+                   snd pair > 0 & coprime (fst pair) (snd pair))"
+
+lemma quotient_of_unique:
+  "\<exists>!p. r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
+proof (cases r)
+  case (Fract a b)
+  then have "r = Fract (fst (a, b)) (snd (a, b)) \<and> snd (a, b) > 0 \<and> coprime (fst (a, b)) (snd (a, b))" by auto
+  then show ?thesis proof (rule ex1I)
+    fix p
+    obtain c d :: int where p: "p = (c, d)" by (cases p)
+    assume "r = Fract (fst p) (snd p) \<and> snd p > 0 \<and> coprime (fst p) (snd p)"
+    with p have Fract': "r = Fract c d" "d > 0" "coprime c d" by simp_all
+    have "c = a \<and> d = b"
+    proof (cases "a = 0")
+      case True with Fract Fract' show ?thesis by (simp add: eq_rat)
+    next
+      case False
+      with Fract Fract' have *: "c * b = a * d" and "c \<noteq> 0" by (auto simp add: eq_rat)
+      then have "c * b > 0 \<longleftrightarrow> a * d > 0" by auto
+      with `b > 0` `d > 0` have "a > 0 \<longleftrightarrow> c > 0" by (simp add: zero_less_mult_iff)
+      with `a \<noteq> 0` `c \<noteq> 0` have sgn: "sgn a = sgn c" by (auto simp add: not_less)
+      from `coprime a b` `coprime c d` have "\<bar>a\<bar> * \<bar>d\<bar> = \<bar>c\<bar> * \<bar>b\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> \<bar>d\<bar> = \<bar>b\<bar>"
+        by (simp add: coprime_crossproduct_int)
+      with `b > 0` `d > 0` have "\<bar>a\<bar> * d = \<bar>c\<bar> * b \<longleftrightarrow> \<bar>a\<bar> = \<bar>c\<bar> \<and> d = b" by simp
+      then have "a * sgn a * d = c * sgn c * b \<longleftrightarrow> a * sgn a = c * sgn c \<and> d = b" by (simp add: abs_sgn)
+      with sgn * show ?thesis by (auto simp add: sgn_0_0)
+    qed
+    with p show "p = (a, b)" by simp
+  qed
+qed
+
+lemma quotient_of_Fract [code]:
+  "quotient_of (Fract a b) = normalize (a, b)"
+proof -
+  have "Fract a b = Fract (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?Fract)
+    by (rule sym) (auto intro: normalize_eq)
+  moreover have "0 < snd (normalize (a, b))" (is ?denom_pos) 
+    by (cases "normalize (a, b)") (rule normalize_denom_pos, simp)
+  moreover have "coprime (fst (normalize (a, b))) (snd (normalize (a, b)))" (is ?coprime)
+    by (rule normalize_coprime) simp
+  ultimately have "?Fract \<and> ?denom_pos \<and> ?coprime" by blast
+  with quotient_of_unique have
+    "(THE p. Fract a b = Fract (fst p) (snd p) \<and> 0 < snd p \<and> coprime (fst p) (snd p)) = normalize (a, b)"
+    by (rule the1_equality)
+  then show ?thesis by (simp add: quotient_of_def)
+qed
+
+lemma quotient_of_number [simp]:
+  "quotient_of 0 = (0, 1)"
+  "quotient_of 1 = (1, 1)"
+  "quotient_of (number_of k) = (number_of k, 1)"
+  by (simp_all add: rat_number_expand quotient_of_Fract)
+
+lemma quotient_of_eq: "quotient_of (Fract a b) = (p, q) \<Longrightarrow> Fract p q = Fract a b"
+  by (simp add: quotient_of_Fract normalize_eq)
+
+lemma quotient_of_denom_pos: "quotient_of r = (p, q) \<Longrightarrow> q > 0"
+  by (cases r) (simp add: quotient_of_Fract normalize_denom_pos)
+
+lemma quotient_of_coprime: "quotient_of r = (p, q) \<Longrightarrow> coprime p q"
+  by (cases r) (simp add: quotient_of_Fract normalize_coprime)
+
+lemma quotient_of_inject:
+  assumes "quotient_of a = quotient_of b"
+  shows "a = b"
+proof -
+  obtain p q r s where a: "a = Fract p q"
+    and b: "b = Fract r s"
+    and "q > 0" and "s > 0" by (cases a, cases b)
+  with assms show ?thesis by (simp add: eq_rat quotient_of_Fract normalize_crossproduct)
+qed
+
+lemma quotient_of_inject_eq:
+  "quotient_of a = quotient_of b \<longleftrightarrow> a = b"
+  by (auto simp add: quotient_of_inject)
+
+
+subsubsection {* The field of rational numbers *}
+
+instantiation rat :: "{field, division_by_zero}"
+begin
+
+definition
+  inverse_rat_def:
+  "inverse q = Abs_Rat (\<Union>x \<in> Rep_Rat q.
+     ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)})"
+
+lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a"
+proof -
+  have "(\<lambda>x. ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)}) respects ratrel"
+    by (auto simp add: congruent_def mult_commute)
+  then show ?thesis by (simp add: Fract_def inverse_rat_def UN_ratrel)
+qed
+
+definition
+  divide_rat_def: "q / r = q * inverse (r::rat)"
+
+lemma divide_rat [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)"
+  by (simp add: divide_rat_def)
+
+instance proof
+  show "inverse 0 = (0::rat)" by (simp add: rat_number_expand)
+    (simp add: rat_number_collapse)
+next
+  fix q :: rat
+  assume "q \<noteq> 0"
+  then show "inverse q * q = 1" by (cases q rule: Rat_cases_nonzero)
+   (simp_all add: rat_number_expand eq_rat)
+next
+  fix q r :: rat
+  show "q / r = q * inverse r" by (simp add: divide_rat_def)
+qed
+
+end
+
+
+subsubsection {* Various *}
+
+lemma Fract_add_one: "n \<noteq> 0 ==> Fract (m + n) n = Fract m n + 1"
+  by (simp add: rat_number_expand)
+
+lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l"
+  by (simp add: Fract_of_int_eq [symmetric])
+
+lemma Fract_number_of_quotient:
+  "Fract (number_of k) (number_of l) = number_of k / number_of l"
+  unfolding Fract_of_int_quotient number_of_is_id number_of_eq ..
+
+lemma Fract_1_number_of:
+  "Fract 1 (number_of k) = 1 / number_of k"
+  unfolding Fract_of_int_quotient number_of_eq by simp
+
+subsubsection {* The ordered field of rational numbers *}
+
+instantiation rat :: linorder
+begin
+
+definition
+  le_rat_def:
+   "q \<le> r \<longleftrightarrow> contents (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
+      {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})"
+
+lemma le_rat [simp]:
+  assumes "b \<noteq> 0" and "d \<noteq> 0"
+  shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
+proof -
+  have "(\<lambda>x y. {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})
+    respects2 ratrel"
+  proof (clarsimp simp add: congruent2_def)
+    fix a b a' b' c d c' d'::int
+    assume neq: "b \<noteq> 0"  "b' \<noteq> 0"  "d \<noteq> 0"  "d' \<noteq> 0"
+    assume eq1: "a * b' = a' * b"
+    assume eq2: "c * d' = c' * d"
+
+    let ?le = "\<lambda>a b c d. ((a * d) * (b * d) \<le> (c * b) * (b * d))"
+    {
+      fix a b c d x :: int assume x: "x \<noteq> 0"
+      have "?le a b c d = ?le (a * x) (b * x) c d"
+      proof -
+        from x have "0 < x * x" by (auto simp add: zero_less_mult_iff)
+        hence "?le a b c d =
+            ((a * d) * (b * d) * (x * x) \<le> (c * b) * (b * d) * (x * x))"
+          by (simp add: mult_le_cancel_right)
+        also have "... = ?le (a * x) (b * x) c d"
+          by (simp add: mult_ac)
+        finally show ?thesis .
+      qed
+    } note le_factor = this
+
+    let ?D = "b * d" and ?D' = "b' * d'"
+    from neq have D: "?D \<noteq> 0" by simp
+    from neq have "?D' \<noteq> 0" by simp
+    hence "?le a b c d = ?le (a * ?D') (b * ?D') c d"
+      by (rule le_factor)
+    also have "... = ((a * b') * ?D * ?D' * d * d' \<le> (c * d') * ?D * ?D' * b * b')" 
+      by (simp add: mult_ac)
+    also have "... = ((a' * b) * ?D * ?D' * d * d' \<le> (c' * d) * ?D * ?D' * b * b')"
+      by (simp only: eq1 eq2)
+    also have "... = ?le (a' * ?D) (b' * ?D) c' d'"
+      by (simp add: mult_ac)
+    also from D have "... = ?le a' b' c' d'"
+      by (rule le_factor [symmetric])
+    finally show "?le a b c d = ?le a' b' c' d'" .
+  qed
+  with assms show ?thesis by (simp add: Fract_def le_rat_def UN_ratrel2)
+qed
+
+definition
+  less_rat_def: "z < (w::rat) \<longleftrightarrow> z \<le> w \<and> z \<noteq> w"
+
+lemma less_rat [simp]:
+  assumes "b \<noteq> 0" and "d \<noteq> 0"
+  shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
+  using assms by (simp add: less_rat_def eq_rat order_less_le)
+
+instance proof
+  fix q r s :: rat
+  {
+    assume "q \<le> r" and "r \<le> s"
+    then show "q \<le> s" 
+    proof (induct q, induct r, induct s)
+      fix a b c d e f :: int
+      assume neq: "b > 0"  "d > 0"  "f > 0"
+      assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract e f"
+      show "Fract a b \<le> Fract e f"
+      proof -
+        from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f"
+          by (auto simp add: zero_less_mult_iff linorder_neq_iff)
+        have "(a * d) * (b * d) * (f * f) \<le> (c * b) * (b * d) * (f * f)"
+        proof -
+          from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
+            by simp
+          with ff show ?thesis by (simp add: mult_le_cancel_right)
+        qed
+        also have "... = (c * f) * (d * f) * (b * b)" by algebra
+        also have "... \<le> (e * d) * (d * f) * (b * b)"
+        proof -
+          from neq 2 have "(c * f) * (d * f) \<le> (e * d) * (d * f)"
+            by simp
+          with bb show ?thesis by (simp add: mult_le_cancel_right)
+        qed
+        finally have "(a * f) * (b * f) * (d * d) \<le> e * b * (b * f) * (d * d)"
+          by (simp only: mult_ac)
+        with dd have "(a * f) * (b * f) \<le> (e * b) * (b * f)"
+          by (simp add: mult_le_cancel_right)
+        with neq show ?thesis by simp
+      qed
+    qed
+  next
+    assume "q \<le> r" and "r \<le> q"
+    then show "q = r"
+    proof (induct q, induct r)
+      fix a b c d :: int
+      assume neq: "b > 0"  "d > 0"
+      assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract a b"
+      show "Fract a b = Fract c d"
+      proof -
+        from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
+          by simp
+        also have "... \<le> (a * d) * (b * d)"
+        proof -
+          from neq 2 have "(c * b) * (d * b) \<le> (a * d) * (d * b)"
+            by simp
+          thus ?thesis by (simp only: mult_ac)
+        qed
+        finally have "(a * d) * (b * d) = (c * b) * (b * d)" .
+        moreover from neq have "b * d \<noteq> 0" by simp
+        ultimately have "a * d = c * b" by simp
+        with neq show ?thesis by (simp add: eq_rat)
+      qed
+    qed
+  next
+    show "q \<le> q"
+      by (induct q) simp
+    show "(q < r) = (q \<le> r \<and> \<not> r \<le> q)"
+      by (induct q, induct r) (auto simp add: le_less mult_commute)
+    show "q \<le> r \<or> r \<le> q"
+      by (induct q, induct r)
+         (simp add: mult_commute, rule linorder_linear)
+  }
+qed
+
+end
+
+instantiation rat :: "{distrib_lattice, abs_if, sgn_if}"
+begin
+
+definition
+  abs_rat_def: "\<bar>q\<bar> = (if q < 0 then -q else (q::rat))"
+
+lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
+  by (auto simp add: abs_rat_def zabs_def Zero_rat_def not_less le_less eq_rat zero_less_mult_iff)
+
+definition
+  sgn_rat_def: "sgn (q::rat) = (if q = 0 then 0 else if 0 < q then 1 else - 1)"
+
+lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)"
+  unfolding Fract_of_int_eq
+  by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat)
+    (auto simp: rat_number_collapse not_less le_less zero_less_mult_iff)
+
+definition
+  "(inf \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = min"
+
+definition
+  "(sup \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = max"
+
+instance by intro_classes
+  (auto simp add: abs_rat_def sgn_rat_def min_max.sup_inf_distrib1 inf_rat_def sup_rat_def)
+
+end
+
+instance rat :: linordered_field
+proof
+  fix q r s :: rat
+  show "q \<le> r ==> s + q \<le> s + r"
+  proof (induct q, induct r, induct s)
+    fix a b c d e f :: int
+    assume neq: "b > 0"  "d > 0"  "f > 0"
+    assume le: "Fract a b \<le> Fract c d"
+    show "Fract e f + Fract a b \<le> Fract e f + Fract c d"
+    proof -
+      let ?F = "f * f" from neq have F: "0 < ?F"
+        by (auto simp add: zero_less_mult_iff)
+      from neq le have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
+        by simp
+      with F have "(a * d) * (b * d) * ?F * ?F \<le> (c * b) * (b * d) * ?F * ?F"
+        by (simp add: mult_le_cancel_right)
+      with neq show ?thesis by (simp add: mult_ac int_distrib)
+    qed
+  qed
+  show "q < r ==> 0 < s ==> s * q < s * r"
+  proof (induct q, induct r, induct s)
+    fix a b c d e f :: int
+    assume neq: "b > 0"  "d > 0"  "f > 0"
+    assume le: "Fract a b < Fract c d"
+    assume gt: "0 < Fract e f"
+    show "Fract e f * Fract a b < Fract e f * Fract c d"
+    proof -
+      let ?E = "e * f" and ?F = "f * f"
+      from neq gt have "0 < ?E"
+        by (auto simp add: Zero_rat_def order_less_le eq_rat)
+      moreover from neq have "0 < ?F"
+        by (auto simp add: zero_less_mult_iff)
+      moreover from neq le have "(a * d) * (b * d) < (c * b) * (b * d)"
+        by simp
+      ultimately have "(a * d) * (b * d) * ?E * ?F < (c * b) * (b * d) * ?E * ?F"
+        by (simp add: mult_less_cancel_right)
+      with neq show ?thesis
+        by (simp add: mult_ac)
+    qed
+  qed
+qed auto
+
+lemma Rat_induct_pos [case_names Fract, induct type: rat]:
+  assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
+  shows "P q"
+proof (cases q)
+  have step': "\<And>a b. b < 0 \<Longrightarrow> P (Fract a b)"
+  proof -
+    fix a::int and b::int
+    assume b: "b < 0"
+    hence "0 < -b" by simp
+    hence "P (Fract (-a) (-b))" by (rule step)
+    thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b])
+  qed
+  case (Fract a b)
+  thus "P q" by (force simp add: linorder_neq_iff step step')
+qed
+
+lemma zero_less_Fract_iff:
+  "0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a"
+  by (simp add: Zero_rat_def zero_less_mult_iff)
+
+lemma Fract_less_zero_iff:
+  "0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0"
+  by (simp add: Zero_rat_def mult_less_0_iff)
+
+lemma zero_le_Fract_iff:
+  "0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a"
+  by (simp add: Zero_rat_def zero_le_mult_iff)
+
+lemma Fract_le_zero_iff:
+  "0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0"
+  by (simp add: Zero_rat_def mult_le_0_iff)
+
+lemma one_less_Fract_iff:
+  "0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a"
+  by (simp add: One_rat_def mult_less_cancel_right_disj)
+
+lemma Fract_less_one_iff:
+  "0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b"
+  by (simp add: One_rat_def mult_less_cancel_right_disj)
+
+lemma one_le_Fract_iff:
+  "0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a"
+  by (simp add: One_rat_def mult_le_cancel_right)
+
+lemma Fract_le_one_iff:
+  "0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b"
+  by (simp add: One_rat_def mult_le_cancel_right)
+
+
+subsubsection {* Rationals are an Archimedean field *}
+
+lemma rat_floor_lemma:
+  shows "of_int (a div b) \<le> Fract a b \<and> Fract a b < of_int (a div b + 1)"
+proof -
+  have "Fract a b = of_int (a div b) + Fract (a mod b) b"
+    by (cases "b = 0", simp, simp add: of_int_rat)
+  moreover have "0 \<le> Fract (a mod b) b \<and> Fract (a mod b) b < 1"
+    unfolding Fract_of_int_quotient
+    by (rule linorder_cases [of b 0])
+       (simp add: divide_nonpos_neg, simp, simp add: divide_nonneg_pos)
+  ultimately show ?thesis by simp
+qed
+
+instance rat :: archimedean_field
+proof
+  fix r :: rat
+  show "\<exists>z. r \<le> of_int z"
+  proof (induct r)
+    case (Fract a b)
+    have "Fract a b \<le> of_int (a div b + 1)"
+      using rat_floor_lemma [of a b] by simp
+    then show "\<exists>z. Fract a b \<le> of_int z" ..
+  qed
+qed
+
+lemma floor_Fract: "floor (Fract a b) = a div b"
+  using rat_floor_lemma [of a b]
+  by (simp add: floor_unique)
+
+
+subsection {* Linear arithmetic setup *}
+
+declaration {*
+  K (Lin_Arith.add_inj_thms [@{thm of_nat_le_iff} RS iffD2, @{thm of_nat_eq_iff} RS iffD2]
+    (* not needed because x < (y::nat) can be rewritten as Suc x <= y: of_nat_less_iff RS iffD2 *)
+  #> Lin_Arith.add_inj_thms [@{thm of_int_le_iff} RS iffD2, @{thm of_int_eq_iff} RS iffD2]
+    (* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *)
+  #> Lin_Arith.add_simps [@{thm neg_less_iff_less},
+      @{thm True_implies_equals},
+      read_instantiate @{context} [(("a", 0), "(number_of ?v)")] @{thm right_distrib},
+      @{thm divide_1}, @{thm divide_zero_left},
+      @{thm times_divide_eq_right}, @{thm times_divide_eq_left},
+      @{thm minus_divide_left} RS sym, @{thm minus_divide_right} RS sym,
+      @{thm of_int_minus}, @{thm of_int_diff},
+      @{thm of_int_of_nat_eq}]
+  #> Lin_Arith.add_simprocs Numeral_Simprocs.field_cancel_numeral_factors
+  #> Lin_Arith.add_inj_const (@{const_name of_nat}, @{typ "nat => rat"})
+  #> Lin_Arith.add_inj_const (@{const_name of_int}, @{typ "int => rat"}))
+*}
+
+
+subsection {* Embedding from Rationals to other Fields *}
+
+class field_char_0 = field + ring_char_0
+
+subclass (in linordered_field) field_char_0 ..
+
+context field_char_0
+begin
+
+definition of_rat :: "rat \<Rightarrow> 'a" where
+  "of_rat q = contents (\<Union>(a,b) \<in> Rep_Rat q. {of_int a / of_int b})"
+
+end
+
+lemma of_rat_congruent:
+  "(\<lambda>(a, b). {of_int a / of_int b :: 'a::field_char_0}) respects ratrel"
+apply (rule congruent.intro)
+apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
+apply (simp only: of_int_mult [symmetric])
+done
+
+lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b"
+  unfolding Fract_def of_rat_def by (simp add: UN_ratrel of_rat_congruent)
+
+lemma of_rat_0 [simp]: "of_rat 0 = 0"
+by (simp add: Zero_rat_def of_rat_rat)
+
+lemma of_rat_1 [simp]: "of_rat 1 = 1"
+by (simp add: One_rat_def of_rat_rat)
+
+lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b"
+by (induct a, induct b, simp add: of_rat_rat add_frac_eq)
+
+lemma of_rat_minus: "of_rat (- a) = - of_rat a"
+by (induct a, simp add: of_rat_rat)
+
+lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b"
+by (simp only: diff_minus of_rat_add of_rat_minus)
+
+lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b"
+apply (induct a, induct b, simp add: of_rat_rat)
+apply (simp add: divide_inverse nonzero_inverse_mult_distrib mult_ac)
+done
+
+lemma nonzero_of_rat_inverse:
+  "a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)"
+apply (rule inverse_unique [symmetric])
+apply (simp add: of_rat_mult [symmetric])
+done
+
+lemma of_rat_inverse:
+  "(of_rat (inverse a)::'a::{field_char_0,division_by_zero}) =
+   inverse (of_rat a)"
+by (cases "a = 0", simp_all add: nonzero_of_rat_inverse)
+
+lemma nonzero_of_rat_divide:
+  "b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b"
+by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse)
+
+lemma of_rat_divide:
+  "(of_rat (a / b)::'a::{field_char_0,division_by_zero})
+   = of_rat a / of_rat b"
+by (cases "b = 0") (simp_all add: nonzero_of_rat_divide)
+
+lemma of_rat_power:
+  "(of_rat (a ^ n)::'a::field_char_0) = of_rat a ^ n"
+by (induct n) (simp_all add: of_rat_mult)
+
+lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)"
+apply (induct a, induct b)
+apply (simp add: of_rat_rat eq_rat)
+apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
+apply (simp only: of_int_mult [symmetric] of_int_eq_iff)
+done
+
+lemma of_rat_less:
+  "(of_rat r :: 'a::linordered_field) < of_rat s \<longleftrightarrow> r < s"
+proof (induct r, induct s)
+  fix a b c d :: int
+  assume not_zero: "b > 0" "d > 0"
+  then have "b * d > 0" by (rule mult_pos_pos)
+  have of_int_divide_less_eq:
+    "(of_int a :: 'a) / of_int b < of_int c / of_int d
+      \<longleftrightarrow> (of_int a :: 'a) * of_int d < of_int c * of_int b"
+    using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq)
+  show "(of_rat (Fract a b) :: 'a::linordered_field) < of_rat (Fract c d)
+    \<longleftrightarrow> Fract a b < Fract c d"
+    using not_zero `b * d > 0`
+    by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult)
+qed
+
+lemma of_rat_less_eq:
+  "(of_rat r :: 'a::linordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s"
+  unfolding le_less by (auto simp add: of_rat_less)
+
+lemmas of_rat_eq_0_iff [simp] = of_rat_eq_iff [of _ 0, simplified]
+
+lemma of_rat_eq_id [simp]: "of_rat = id"
+proof
+  fix a
+  show "of_rat a = id a"
+  by (induct a)
+     (simp add: of_rat_rat Fract_of_int_eq [symmetric])
+qed
+
+text{*Collapse nested embeddings*}
+lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n"
+by (induct n) (simp_all add: of_rat_add)
+
+lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z"
+by (cases z rule: int_diff_cases) (simp add: of_rat_diff)
+
+lemma of_rat_number_of_eq [simp]:
+  "of_rat (number_of w) = (number_of w :: 'a::{number_ring,field_char_0})"
+by (simp add: number_of_eq)
+
+lemmas zero_rat = Zero_rat_def
+lemmas one_rat = One_rat_def
+
+abbreviation
+  rat_of_nat :: "nat \<Rightarrow> rat"
+where
+  "rat_of_nat \<equiv> of_nat"
+
+abbreviation
+  rat_of_int :: "int \<Rightarrow> rat"
+where
+  "rat_of_int \<equiv> of_int"
+
+subsection {* The Set of Rational Numbers *}
+
+context field_char_0
+begin
+
+definition
+  Rats  :: "'a set" where
+  "Rats = range of_rat"
+
+notation (xsymbols)
+  Rats  ("\<rat>")
+
+end
+
+lemma Rats_of_rat [simp]: "of_rat r \<in> Rats"
+by (simp add: Rats_def)
+
+lemma Rats_of_int [simp]: "of_int z \<in> Rats"
+by (subst of_rat_of_int_eq [symmetric], rule Rats_of_rat)
+
+lemma Rats_of_nat [simp]: "of_nat n \<in> Rats"
+by (subst of_rat_of_nat_eq [symmetric], rule Rats_of_rat)
+
+lemma Rats_number_of [simp]:
+  "(number_of w::'a::{number_ring,field_char_0}) \<in> Rats"
+by (subst of_rat_number_of_eq [symmetric], rule Rats_of_rat)
+
+lemma Rats_0 [simp]: "0 \<in> Rats"
+apply (unfold Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_0 [symmetric])
+done
+
+lemma Rats_1 [simp]: "1 \<in> Rats"
+apply (unfold Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_1 [symmetric])
+done
+
+lemma Rats_add [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a + b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_add [symmetric])
+done
+
+lemma Rats_minus [simp]: "a \<in> Rats \<Longrightarrow> - a \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_minus [symmetric])
+done
+
+lemma Rats_diff [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a - b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_diff [symmetric])
+done
+
+lemma Rats_mult [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a * b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_mult [symmetric])
+done
+
+lemma nonzero_Rats_inverse:
+  fixes a :: "'a::field_char_0"
+  shows "\<lbrakk>a \<in> Rats; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (erule nonzero_of_rat_inverse [symmetric])
+done
+
+lemma Rats_inverse [simp]:
+  fixes a :: "'a::{field_char_0,division_by_zero}"
+  shows "a \<in> Rats \<Longrightarrow> inverse a \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_inverse [symmetric])
+done
+
+lemma nonzero_Rats_divide:
+  fixes a b :: "'a::field_char_0"
+  shows "\<lbrakk>a \<in> Rats; b \<in> Rats; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (erule nonzero_of_rat_divide [symmetric])
+done
+
+lemma Rats_divide [simp]:
+  fixes a b :: "'a::{field_char_0,division_by_zero}"
+  shows "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_divide [symmetric])
+done
+
+lemma Rats_power [simp]:
+  fixes a :: "'a::field_char_0"
+  shows "a \<in> Rats \<Longrightarrow> a ^ n \<in> Rats"
+apply (auto simp add: Rats_def)
+apply (rule range_eqI)
+apply (rule of_rat_power [symmetric])
+done
+
+lemma Rats_cases [cases set: Rats]:
+  assumes "q \<in> \<rat>"
+  obtains (of_rat) r where "q = of_rat r"
+  unfolding Rats_def
+proof -
+  from `q \<in> \<rat>` have "q \<in> range of_rat" unfolding Rats_def .
+  then obtain r where "q = of_rat r" ..
+  then show thesis ..
+qed
+
+lemma Rats_induct [case_names of_rat, induct set: Rats]:
+  "q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q"
+  by (rule Rats_cases) auto
+
+
+subsection {* Implementation of rational numbers as pairs of integers *}
+
+definition Frct :: "int \<times> int \<Rightarrow> rat" where
+  [simp]: "Frct p = Fract (fst p) (snd p)"
+
+code_abstype Frct quotient_of
+proof (rule eq_reflection)
+  fix r :: rat
+  show "Frct (quotient_of r) = r" by (cases r) (auto intro: quotient_of_eq)
+qed
+
+lemma Frct_code_post [code_post]:
+  "Frct (0, k) = 0"
+  "Frct (k, 0) = 0"
+  "Frct (1, 1) = 1"
+  "Frct (number_of k, 1) = number_of k"
+  "Frct (1, number_of k) = 1 / number_of k"
+  "Frct (number_of k, number_of l) = number_of k / number_of l"
+  by (simp_all add: rat_number_collapse Fract_number_of_quotient Fract_1_number_of)
+
+declare quotient_of_Fract [code abstract]
+
+lemma rat_zero_code [code abstract]:
+  "quotient_of 0 = (0, 1)"
+  by (simp add: Zero_rat_def quotient_of_Fract normalize_def)
+
+lemma rat_one_code [code abstract]:
+  "quotient_of 1 = (1, 1)"
+  by (simp add: One_rat_def quotient_of_Fract normalize_def)
+
+lemma rat_plus_code [code abstract]:
+  "quotient_of (p + q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
+     in normalize (a * d + b * c, c * d))"
+  by (cases p, cases q) (simp add: quotient_of_Fract)
+
+lemma rat_uminus_code [code abstract]:
+  "quotient_of (- p) = (let (a, b) = quotient_of p in (- a, b))"
+  by (cases p) (simp add: quotient_of_Fract)
+
+lemma rat_minus_code [code abstract]:
+  "quotient_of (p - q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
+     in normalize (a * d - b * c, c * d))"
+  by (cases p, cases q) (simp add: quotient_of_Fract)
+
+lemma rat_times_code [code abstract]:
+  "quotient_of (p * q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
+     in normalize (a * b, c * d))"
+  by (cases p, cases q) (simp add: quotient_of_Fract)
+
+lemma rat_inverse_code [code abstract]:
+  "quotient_of (inverse p) = (let (a, b) = quotient_of p
+    in if a = 0 then (0, 1) else (sgn a * b, \<bar>a\<bar>))"
+proof (cases p)
+  case (Fract a b) then show ?thesis
+    by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract gcd_int.commute)
+qed
+
+lemma rat_divide_code [code abstract]:
+  "quotient_of (p / q) = (let (a, c) = quotient_of p; (b, d) = quotient_of q
+     in normalize (a * d, c * b))"
+  by (cases p, cases q) (simp add: quotient_of_Fract)
+
+lemma rat_abs_code [code abstract]:
+  "quotient_of \<bar>p\<bar> = (let (a, b) = quotient_of p in (\<bar>a\<bar>, b))"
+  by (cases p) (simp add: quotient_of_Fract)
+
+lemma rat_sgn_code [code abstract]:
+  "quotient_of (sgn p) = (sgn (fst (quotient_of p)), 1)"
+proof (cases p)
+  case (Fract a b) then show ?thesis
+  by (cases "0::int" a rule: linorder_cases) (simp_all add: quotient_of_Fract)
+qed
+
+instantiation rat :: eq
+begin
+
+definition [code]:
+  "eq_class.eq a b \<longleftrightarrow> quotient_of a = quotient_of b"
+
+instance proof
+qed (simp add: eq_rat_def quotient_of_inject_eq)
+
+lemma rat_eq_refl [code nbe]:
+  "eq_class.eq (r::rat) r \<longleftrightarrow> True"
+  by (rule HOL.eq_refl)
+
+end
+
+lemma rat_less_eq_code [code]:
+  "p \<le> q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d \<le> c * b)"
+  by (cases p, cases q) (simp add: quotient_of_Fract times.commute)
+
+lemma rat_less_code [code]:
+  "p < q \<longleftrightarrow> (let (a, c) = quotient_of p; (b, d) = quotient_of q in a * d < c * b)"
+  by (cases p, cases q) (simp add: quotient_of_Fract times.commute)
+
+lemma [code]:
+  "of_rat p = (let (a, b) = quotient_of p in of_int a / of_int b)"
+  by (cases p) (simp add: quotient_of_Fract of_rat_rat)
+
+definition (in term_syntax)
+  valterm_fract :: "int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> rat \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
+  [code_unfold]: "valterm_fract k l = Code_Evaluation.valtermify Fract {\<cdot>} k {\<cdot>} l"
+
+notation fcomp (infixl "o>" 60)
+notation scomp (infixl "o\<rightarrow>" 60)
+
+instantiation rat :: random
+begin
+
+definition
+  "Quickcheck.random i = Quickcheck.random i o\<rightarrow> (\<lambda>num. Random.range i o\<rightarrow> (\<lambda>denom. Pair (
+     let j = Code_Numeral.int_of (denom + 1)
+     in valterm_fract num (j, \<lambda>u. Code_Evaluation.term_of j))))"
+
+instance ..
+
+end
+
+no_notation fcomp (infixl "o>" 60)
+no_notation scomp (infixl "o\<rightarrow>" 60)
+
+text {* Setup for SML code generator *}
+
+types_code
+  rat ("(int */ int)")
+attach (term_of) {*
+fun term_of_rat (p, q) =
+  let
+    val rT = Type ("Rat.rat", [])
+  in
+    if q = 1 orelse p = 0 then HOLogic.mk_number rT p
+    else @{term "op / \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat"} $
+      HOLogic.mk_number rT p $ HOLogic.mk_number rT q
+  end;
+*}
+attach (test) {*
+fun gen_rat i =
+  let
+    val p = random_range 0 i;
+    val q = random_range 1 (i + 1);
+    val g = Integer.gcd p q;
+    val p' = p div g;
+    val q' = q div g;
+    val r = (if one_of [true, false] then p' else ~ p',
+      if p' = 0 then 1 else q')
+  in
+    (r, fn () => term_of_rat r)
+  end;
+*}
+
+consts_code
+  Fract ("(_,/ _)")
+
+consts_code
+  quotient_of ("{*normalize*}")
+
+consts_code
+  "of_int :: int \<Rightarrow> rat" ("\<module>rat'_of'_int")
+attach {*
+fun rat_of_int i = (i, 1);
+*}
+
+setup {*
+  Nitpick.register_frac_type @{type_name rat}
+   [(@{const_name zero_rat_inst.zero_rat}, @{const_name Nitpick.zero_frac}),
+    (@{const_name one_rat_inst.one_rat}, @{const_name Nitpick.one_frac}),
+    (@{const_name plus_rat_inst.plus_rat}, @{const_name Nitpick.plus_frac}),
+    (@{const_name times_rat_inst.times_rat}, @{const_name Nitpick.times_frac}),
+    (@{const_name uminus_rat_inst.uminus_rat}, @{const_name Nitpick.uminus_frac}),
+    (@{const_name number_rat_inst.number_of_rat}, @{const_name Nitpick.number_of_frac}),
+    (@{const_name inverse_rat_inst.inverse_rat}, @{const_name Nitpick.inverse_frac}),
+    (@{const_name ord_rat_inst.less_eq_rat}, @{const_name Nitpick.less_eq_frac}),
+    (@{const_name field_char_0_class.of_rat}, @{const_name Nitpick.of_frac}),
+    (@{const_name field_char_0_class.Rats}, @{const_name UNIV})]
+*}
+
+lemmas [nitpick_def] = inverse_rat_inst.inverse_rat
+  number_rat_inst.number_of_rat one_rat_inst.one_rat ord_rat_inst.less_eq_rat
+  plus_rat_inst.plus_rat times_rat_inst.times_rat uminus_rat_inst.uminus_rat
+  zero_rat_inst.zero_rat
+
+subsection{* Float syntax *}
+
+syntax "_Float" :: "float_const \<Rightarrow> 'a"    ("_")
+
+use "Tools/float_syntax.ML"
+setup Float_Syntax.setup
+
+text{* Test: *}
+lemma "123.456 = -111.111 + 200 + 30 + 4 + 5/10 + 6/100 + (7/1000::rat)"
+by simp
+
+end