src/ZF/Constructible/DPow_absolute.thy
changeset 13503 d93f41fe35d2
child 13504 59066e97b551
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/Constructible/DPow_absolute.thy	Thu Aug 15 21:36:26 2002 +0200
@@ -0,0 +1,319 @@
+(*  Title:      ZF/Constructible/DPow_absolute.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   2002  University of Cambridge
+*)
+
+header {*Absoluteness for the Definable Powerset Function*}
+
+
+theory DPow_absolute = Satisfies_absolute:
+
+
+subsection{*Preliminary Internalizations*}
+
+subsubsection{*The Operator @{term is_formula_rec}*}
+
+text{*The three arguments of @{term p} are always 2, 1, 0.  It is buried
+   within 11 quantifiers!!*}
+
+(* is_formula_rec :: "[i=>o, [i,i,i]=>o, i, i] => o"
+   "is_formula_rec(M,MH,p,z)  ==
+      \<exists>dp[M]. \<exists>i[M]. \<exists>f[M]. finite_ordinal(M,dp) & is_depth(M,p,dp) & 
+       2       1      0
+             successor(M,dp,i) & fun_apply(M,f,p,z) & is_transrec(M,MH,i,f)"
+*)
+
+constdefs formula_rec_fm :: "[i, i, i]=>i"
+ "formula_rec_fm(mh,p,z) == 
+    Exists(Exists(Exists(
+      And(finite_ordinal_fm(2),
+       And(depth_fm(p#+3,2),
+        And(succ_fm(2,1), 
+          And(fun_apply_fm(0,p#+3,z#+3), is_transrec_fm(mh,1,0))))))))"
+
+lemma is_formula_rec_type [TC]:
+     "[| p \<in> formula; x \<in> nat; z \<in> nat |] 
+      ==> formula_rec_fm(p,x,z) \<in> formula"
+by (simp add: formula_rec_fm_def) 
+
+lemma sats_formula_rec_fm:
+  assumes MH_iff_sats: 
+      "!!a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10. 
+        [|a0\<in>A; a1\<in>A; a2\<in>A; a3\<in>A; a4\<in>A; a5\<in>A; a6\<in>A; a7\<in>A; a8\<in>A; a9\<in>A; a10\<in>A|]
+        ==> MH(a2, a1, a0) <-> 
+            sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,
+                          Cons(a4,Cons(a5,Cons(a6,Cons(a7,
+                                  Cons(a8,Cons(a9,Cons(a10,env))))))))))))"
+  shows 
+      "[|x \<in> nat; z \<in> nat; env \<in> list(A)|]
+       ==> sats(A, formula_rec_fm(p,x,z), env) <-> 
+           is_formula_rec(**A, MH, nth(x,env), nth(z,env))"
+by (simp add: formula_rec_fm_def sats_is_transrec_fm is_formula_rec_def 
+              MH_iff_sats [THEN iff_sym])
+
+lemma formula_rec_iff_sats:
+  assumes MH_iff_sats: 
+      "!!a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10. 
+        [|a0\<in>A; a1\<in>A; a2\<in>A; a3\<in>A; a4\<in>A; a5\<in>A; a6\<in>A; a7\<in>A; a8\<in>A; a9\<in>A; a10\<in>A|]
+        ==> MH(a2, a1, a0) <-> 
+            sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,
+                          Cons(a4,Cons(a5,Cons(a6,Cons(a7,
+                                  Cons(a8,Cons(a9,Cons(a10,env))))))))))))"
+  shows
+  "[|nth(i,env) = x; nth(k,env) = z; 
+      i \<in> nat; k \<in> nat; env \<in> list(A)|]
+   ==> is_formula_rec(**A, MH, x, z) <-> sats(A, formula_rec_fm(p,i,k), env)" 
+by (simp add: sats_formula_rec_fm [OF MH_iff_sats])
+
+theorem formula_rec_reflection:
+  assumes MH_reflection:
+    "!!f' f g h. REFLECTS[\<lambda>x. MH(L, f'(x), f(x), g(x), h(x)), 
+                     \<lambda>i x. MH(**Lset(i), f'(x), f(x), g(x), h(x))]"
+  shows "REFLECTS[\<lambda>x. is_formula_rec(L, MH(L,x), f(x), h(x)), 
+               \<lambda>i x. is_formula_rec(**Lset(i), MH(**Lset(i),x), f(x), h(x))]"
+apply (simp (no_asm_use) only: is_formula_rec_def setclass_simps)
+apply (intro FOL_reflections function_reflections fun_plus_reflections
+             depth_reflection is_transrec_reflection MH_reflection)
+done
+
+
+subsubsection{*The Operator @{term is_satisfies}*}
+
+(* is_satisfies(M,A,p,z) == is_formula_rec (M, satisfies_MH(M,A), p, z) *)
+constdefs satisfies_fm :: "[i,i,i]=>i"
+    "satisfies_fm(x) == formula_rec_fm (satisfies_MH_fm(x#+5#+6, 2, 1, 0))"
+
+lemma is_satisfies_type [TC]:
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> satisfies_fm(x,y,z) \<in> formula"
+by (simp add: satisfies_fm_def)
+
+lemma sats_satisfies_fm [simp]:
+   "[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
+    ==> sats(A, satisfies_fm(x,y,z), env) <->
+        is_satisfies(**A, nth(x,env), nth(y,env), nth(z,env))"
+by (simp add: satisfies_fm_def is_satisfies_def sats_satisfies_MH_fm
+              sats_formula_rec_fm)
+
+lemma satisfies_iff_sats:
+      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
+          i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
+       ==> is_satisfies(**A, x, y, z) <-> sats(A, satisfies_fm(i,j,k), env)"
+by (simp add: sats_satisfies_fm)
+
+theorem satisfies_reflection:
+     "REFLECTS[\<lambda>x. is_satisfies(L,f(x),g(x),h(x)),
+               \<lambda>i x. is_satisfies(**Lset(i),f(x),g(x),h(x))]"
+apply (simp only: is_satisfies_def setclass_simps)
+apply (intro formula_rec_reflection satisfies_MH_reflection)
+done
+
+
+subsection {*Relativization of the Operator @{term DPow'}*}
+
+lemma DPow'_eq: 
+  "DPow'(A) = Replace(list(A) * formula,
+              %ep z. \<exists>env \<in> list(A). \<exists>p \<in> formula. 
+                     ep = <env,p> & z = {x\<in>A. sats(A, p, Cons(x,env))})"
+apply (simp add: DPow'_def, blast) 
+done
+
+
+constdefs
+  is_DPow_body :: "[i=>o,i,i,i,i] => o"
+   "is_DPow_body(M,A,env,p,x) ==
+      \<forall>n1[M]. \<forall>e[M]. \<forall>sp[M]. 
+             is_satisfies(M,A,p,sp) --> is_Cons(M,x,env,e) --> 
+             fun_apply(M, sp, e, n1) --> number1(M, n1)"
+
+lemma (in M_satisfies) DPow_body_abs:
+    "[| M(A); env \<in> list(A); p \<in> formula; M(x) |]
+    ==> is_DPow_body(M,A,env,p,x) <-> sats(A, p, Cons(x,env))"
+apply (subgoal_tac "M(env)") 
+ apply (simp add: is_DPow_body_def satisfies_closed satisfies_abs) 
+apply (blast dest: transM) 
+done
+
+lemma (in M_satisfies) Collect_DPow_body_abs:
+    "[| M(A); env \<in> list(A); p \<in> formula |]
+    ==> Collect(A, is_DPow_body(M,A,env,p)) = 
+        {x \<in> A. sats(A, p, Cons(x,env))}"
+by (simp add: DPow_body_abs transM [of _ A])
+
+
+subsubsection{*The Operator @{term is_DPow_body}, Internalized*}
+
+(* is_DPow_body(M,A,env,p,x) ==
+      \<forall>n1[M]. \<forall>e[M]. \<forall>sp[M]. 
+             is_satisfies(M,A,p,sp) --> is_Cons(M,x,env,e) --> 
+             fun_apply(M, sp, e, n1) --> number1(M, n1) *)
+
+constdefs DPow_body_fm :: "[i,i,i,i]=>i"
+ "DPow_body_fm(A,env,p,x) ==
+   Forall(Forall(Forall(
+     Implies(satisfies_fm(A#+3,p#+3,0), 
+       Implies(Cons_fm(x#+3,env#+3,1), 
+         Implies(fun_apply_fm(0,1,2), number1_fm(2)))))))"
+
+lemma is_DPow_body_type [TC]:
+     "[| A \<in> nat; x \<in> nat; y \<in> nat; z \<in> nat |]
+      ==> DPow_body_fm(A,x,y,z) \<in> formula"
+by (simp add: DPow_body_fm_def)
+
+lemma sats_DPow_body_fm [simp]:
+   "[| u \<in> nat; x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
+    ==> sats(A, DPow_body_fm(u,x,y,z), env) <->
+        is_DPow_body(**A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"
+by (simp add: DPow_body_fm_def is_DPow_body_def)
+
+lemma DPow_body_iff_sats:
+  "[| nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;
+      u \<in> nat; x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
+   ==> is_DPow_body(**A,nu,nx,ny,nz) <->
+       sats(A, DPow_body_fm(u,x,y,z), env)"
+by simp
+
+theorem DPow_body_reflection:
+     "REFLECTS[\<lambda>x. is_DPow_body(L,f(x),g(x),h(x),g'(x)),
+               \<lambda>i x. is_DPow_body(**Lset(i),f(x),g(x),h(x),g'(x))]"
+apply (unfold is_DPow_body_def) 
+apply (intro FOL_reflections function_reflections extra_reflections
+             satisfies_reflection)
+done
+
+
+subsection{*Additional Constraints on the Class Model @{term M}*}
+
+locale M_DPow = M_satisfies +
+ assumes sep:
+   "[| M(A); env \<in> list(A); p \<in> formula |]
+    ==> separation(M, \<lambda>x. is_DPow_body(M,A,env,p,x))"
+ and rep: 
+    "M(A)
+    ==> strong_replacement (M, 
+         \<lambda>ep z. \<exists>env[M]. \<exists>p[M]. mem_formula(M,p) & mem_list(M,A,env) &
+                  pair(M,env,p,ep) & 
+                  is_Collect(M, A, \<lambda>x. is_DPow_body(M,A,env,p,x), z))"
+
+lemma (in M_DPow) sep':
+   "[| M(A); env \<in> list(A); p \<in> formula |]
+    ==> separation(M, \<lambda>x. sats(A, p, Cons(x,env)))"
+by (insert sep [of A env p], simp add: DPow_body_abs)
+
+lemma (in M_DPow) rep':
+   "M(A)
+    ==> strong_replacement (M, 
+         \<lambda>ep z. \<exists>env\<in>list(A). \<exists>p\<in>formula.
+                  ep = <env,p> & z = {x \<in> A . sats(A, p, Cons(x, env))})"
+by (insert rep [of A], simp add: Collect_DPow_body_abs) 
+
+
+lemma univalent_pair_eq:
+     "univalent (M, A, \<lambda>xy z. \<exists>x\<in>B. \<exists>y\<in>C. xy = \<langle>x,y\<rangle> \<and> z = f(x,y))"
+by (simp add: univalent_def, blast) 
+
+lemma (in M_DPow) DPow'_closed: "M(A) ==> M(DPow'(A))"
+apply (simp add: DPow'_eq)
+apply (fast intro: rep' sep' univalent_pair_eq)  
+done
+
+text{*Relativization of the Operator @{term DPow'}*}
+constdefs 
+  is_DPow' :: "[i=>o,i,i] => o"
+    "is_DPow'(M,A,Z) == 
+       \<forall>X[M]. X \<in> Z <-> 
+         subset(M,X,A) & 
+           (\<exists>env[M]. \<exists>p[M]. mem_formula(M,p) & mem_list(M,A,env) &
+                    is_Collect(M, A, is_DPow_body(M,A,env,p), X))"
+
+lemma (in M_DPow) DPow'_abs:
+    "[|M(A); M(Z)|] ==> is_DPow'(M,A,Z) <-> Z = DPow'(A)"
+apply (rule iffI)
+ prefer 2 apply (simp add: is_DPow'_def DPow'_def Collect_DPow_body_abs) 
+apply (rule M_equalityI) 
+apply (simp add: is_DPow'_def DPow'_def Collect_DPow_body_abs, assumption)
+apply (erule DPow'_closed)
+done
+
+
+subsection{*Instantiating the Locale @{text M_DPow}*}
+
+subsubsection{*The Instance of Separation*}
+
+lemma DPow_separation:
+    "[| L(A); env \<in> list(A); p \<in> formula |]
+     ==> separation(L, \<lambda>x. is_DPow_body(L,A,env,p,x))"
+apply (subgoal_tac "L(env) & L(p)") 
+ prefer 2 apply (blast intro: transL) 
+apply (rule separation_CollectI)
+apply (rule_tac A="{A,env,p,z}" in subset_LsetE, blast )
+apply (rule ReflectsE [OF DPow_body_reflection], assumption)
+apply (drule subset_Lset_ltD, assumption)
+apply (erule reflection_imp_L_separation)
+  apply (simp_all add: lt_Ord2)
+apply (rule DPow_LsetI)
+apply (rule_tac env = "[x,A,env,p]" in DPow_body_iff_sats)
+apply (rule sep_rules | simp)+
+done
+
+
+
+subsubsection{*The Instance of Replacement*}
+
+lemma DPow_replacement_Reflects:
+ "REFLECTS [\<lambda>x. \<exists>u[L]. u \<in> B &
+             (\<exists>env[L]. \<exists>p[L].
+               mem_formula(L,p) & mem_list(L,A,env) & pair(L,env,p,u) &
+               is_Collect (L, A, is_DPow_body(L,A,env,p), x)),
+    \<lambda>i x. \<exists>u \<in> Lset(i). u \<in> B &
+             (\<exists>env \<in> Lset(i). \<exists>p \<in> Lset(i).
+               mem_formula(**Lset(i),p) & mem_list(**Lset(i),A,env) & 
+               pair(**Lset(i),env,p,u) &
+               is_Collect (**Lset(i), A, is_DPow_body(**Lset(i),A,env,p), x))]"
+apply (unfold is_Collect_def) 
+apply (intro FOL_reflections function_reflections mem_formula_reflection
+          mem_list_reflection DPow_body_reflection)
+done
+
+lemma DPow_replacement:
+    "L(A)
+    ==> strong_replacement (L, 
+         \<lambda>ep z. \<exists>env[L]. \<exists>p[L]. mem_formula(L,p) & mem_list(L,A,env) &
+                  pair(L,env,p,ep) & 
+                  is_Collect(L, A, \<lambda>x. is_DPow_body(L,A,env,p,x), z))"
+apply (rule strong_replacementI)
+apply (rule rallI)
+apply (rename_tac B)
+apply (rule separation_CollectI)
+apply (rule_tac A="{A,B,z}" in subset_LsetE, blast)
+apply (rule ReflectsE [OF DPow_replacement_Reflects], assumption)
+apply (drule subset_Lset_ltD, assumption)
+apply (erule reflection_imp_L_separation)
+  apply (simp_all add: lt_Ord2)
+apply (rule DPow_LsetI)
+apply (rename_tac v)
+apply (unfold is_Collect_def) 
+apply (rule bex_iff_sats conj_iff_sats)+
+apply (rule_tac env = "[u,v,A,B]" in mem_iff_sats)
+apply (rule sep_rules mem_formula_iff_sats mem_list_iff_sats 
+            DPow_body_iff_sats | simp)+
+done
+
+
+subsubsection{*Actually Instantiating the Locale*}
+
+lemma M_DPow_axioms_L: "M_DPow_axioms(L)"
+  apply (rule M_DPow_axioms.intro)
+   apply (assumption | rule DPow_separation DPow_replacement)+
+  done
+
+theorem M_DPow_L: "PROP M_DPow(L)"
+  apply (rule M_DPow.intro)
+       apply (rule M_satisfies.axioms [OF M_satisfies_L])+
+  apply (rule M_DPow_axioms_L)
+  done
+
+lemmas DPow'_closed [intro, simp] = M_DPow.DPow'_closed [OF M_DPow_L]
+  and DPow'_abs [intro, simp] = M_DPow.DPow'_abs [OF M_DPow_L]
+
+end