src/ZF/Integ/Int.thy
changeset 13560 d9651081578b
parent 12114 a8e860c86252
child 13612 55d32e76ef4e
--- a/src/ZF/Integ/Int.thy	Thu Sep 05 14:03:03 2002 +0200
+++ b/src/ZF/Integ/Int.thy	Sat Sep 07 22:04:28 2002 +0200
@@ -3,51 +3,52 @@
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
 
-The integers as equivalence classes over nat*nat.
 *)
 
-Int = EquivClass + ArithSimp +
+header{*The Integers as Equivalence Classes Over Pairs of Natural Numbers*}
+
+theory Int = EquivClass + ArithSimp:
 
 constdefs
   intrel :: i
-    "intrel == {p:(nat*nat)*(nat*nat).                 
+    "intrel == {p : (nat*nat)*(nat*nat).                 
                 EX x1 y1 x2 y2. p=<<x1,y1>,<x2,y2>> & x1#+y2 = x2#+y1}"
 
   int :: i
     "int == (nat*nat)//intrel"  
 
-  int_of :: i=>i (*coercion from nat to int*)    ("$# _" [80] 80)
+  int_of :: "i=>i" --{*coercion from nat to int*}    ("$# _" [80] 80)
     "$# m == intrel `` {<natify(m), 0>}"
 
-  intify :: i=>i (*coercion from ANYTHING to int*) 
+  intify :: "i=>i" --{*coercion from ANYTHING to int*}
     "intify(m) == if m : int then m else $#0"
 
-  raw_zminus :: i=>i
+  raw_zminus :: "i=>i"
     "raw_zminus(z) == UN <x,y>: z. intrel``{<y,x>}"
 
-  zminus :: i=>i                                 ("$- _" [80] 80)
+  zminus :: "i=>i"                                 ("$- _" [80] 80)
     "$- z == raw_zminus (intify(z))"
 
-  znegative   ::      i=>o
+  znegative   ::      "i=>o"
     "znegative(z) == EX x y. x<y & y:nat & <x,y>:z"
 
-  iszero      ::      i=>o
+  iszero      ::      "i=>o"
     "iszero(z) == z = $# 0"
     
-  raw_nat_of  :: i => i
+  raw_nat_of  :: "i=>i"
   "raw_nat_of(z) == if znegative(z) then 0
                     else (THE m. m: nat & z = int_of(m))"
 
-  nat_of  :: i => i
+  nat_of  :: "i=>i"
   "nat_of(z) == raw_nat_of (intify(z))"
 
-  (*could be replaced by an absolute value function from int to int?*)
-  zmagnitude  ::      i=>i
+  zmagnitude  ::      "i=>i"
+  --{*could be replaced by an absolute value function from int to int?*}
     "zmagnitude(z) ==
      THE m. m : nat & ((~ znegative(z) & z = $# m) |
 		       (znegative(z) & $- z = $# m))"
 
-  raw_zmult   ::      [i,i]=>i
+  raw_zmult   ::      "[i,i]=>i"
     (*Cannot use UN<x1,y2> here or in zadd because of the form of congruent2.
       Perhaps a "curried" or even polymorphic congruent predicate would be
       better.*)
@@ -55,31 +56,1069 @@
        UN p1:z1. UN p2:z2.  split(%x1 y1. split(%x2 y2.        
                    intrel``{<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}, p2), p1)"
 
-  zmult       ::      [i,i]=>i      (infixl "$*" 70)
+  zmult       ::      "[i,i]=>i"      (infixl "$*" 70)
      "z1 $* z2 == raw_zmult (intify(z1),intify(z2))"
 
-  raw_zadd    ::      [i,i]=>i
+  raw_zadd    ::      "[i,i]=>i"
      "raw_zadd (z1, z2) == 
        UN z1:z1. UN z2:z2. let <x1,y1>=z1; <x2,y2>=z2                 
                            in intrel``{<x1#+x2, y1#+y2>}"
 
-  zadd        ::      [i,i]=>i      (infixl "$+" 65)
+  zadd        ::      "[i,i]=>i"      (infixl "$+" 65)
      "z1 $+ z2 == raw_zadd (intify(z1),intify(z2))"
 
-  zdiff        ::      [i,i]=>i      (infixl "$-" 65)
+  zdiff        ::      "[i,i]=>i"      (infixl "$-" 65)
      "z1 $- z2 == z1 $+ zminus(z2)"
 
-  zless        ::      [i,i]=>o      (infixl "$<" 50)
+  zless        ::      "[i,i]=>o"      (infixl "$<" 50)
      "z1 $< z2 == znegative(z1 $- z2)"
   
-  zle          ::      [i,i]=>o      (infixl "$<=" 50)
+  zle          ::      "[i,i]=>o"      (infixl "$<=" 50)
      "z1 $<= z2 == z1 $< z2 | intify(z1)=intify(z2)"
   
 
 syntax (xsymbols)
-  "zmult"     :: [i,i] => i          (infixl "$\\<times>" 70)
-  "zle"       :: [i,i] => o          (infixl "$\\<le>" 50)  (*less than / equals*)
+  zmult :: "[i,i]=>i"          (infixl "$\<times>" 70)
+  zle   :: "[i,i]=>o"          (infixl "$\<le>" 50)  --{*less than or equals*}
 
 syntax (HTML output)
-  "zmult"     :: [i,i] => i          (infixl "$\\<times>" 70)
+  zmult :: "[i,i]=>i"          (infixl "$\<times>" 70)
+
+
+declare quotientE [elim!]
+
+subsection{*Proving that @{term intrel} is an equivalence relation*}
+
+(** Natural deduction for intrel **)
+
+lemma intrel_iff [simp]: 
+    "<<x1,y1>,<x2,y2>>: intrel <->  
+     x1: nat & y1: nat & x2: nat & y2: nat & x1#+y2 = x2#+y1"
+by (unfold intrel_def, fast)
+
+lemma intrelI [intro!]: 
+    "[| x1#+y2 = x2#+y1; x1: nat; y1: nat; x2: nat; y2: nat |]   
+     ==> <<x1,y1>,<x2,y2>>: intrel"
+by (unfold intrel_def, fast)
+
+lemma intrelE [elim!]:
+  "[| p: intrel;   
+      !!x1 y1 x2 y2. [| p = <<x1,y1>,<x2,y2>>;  x1#+y2 = x2#+y1;  
+                        x1: nat; y1: nat; x2: nat; y2: nat |] ==> Q |]  
+   ==> Q"
+by (unfold intrel_def, blast) 
+
+lemma int_trans_lemma:
+     "[| x1 #+ y2 = x2 #+ y1; x2 #+ y3 = x3 #+ y2 |] ==> x1 #+ y3 = x3 #+ y1"
+apply (rule sym)
+apply (erule add_left_cancel)+
+apply (simp_all (no_asm_simp))
+done
+
+lemma equiv_intrel: "equiv(nat*nat, intrel)"
+apply (unfold equiv_def refl_def sym_def trans_def)
+apply (fast elim!: sym int_trans_lemma)
+done
+
+lemma image_intrel_int: "[| m: nat; n: nat |] ==> intrel `` {<m,n>} : int"
+apply (unfold int_def)
+apply (blast intro: quotientI)
+done
+
+declare equiv_intrel [THEN eq_equiv_class_iff, simp]
+declare conj_cong [cong]
+
+lemmas eq_intrelD = eq_equiv_class [OF _ equiv_intrel]
+
+(** int_of: the injection from nat to int **)
+
+lemma int_of_type [simp,TC]: "$#m : int"
+by (unfold int_def quotient_def int_of_def, auto)
+
+lemma int_of_eq [iff]: "($# m = $# n) <-> natify(m)=natify(n)"
+by (unfold int_of_def, auto)
+
+lemma int_of_inject: "[| $#m = $#n;  m: nat;  n: nat |] ==> m=n"
+by (drule int_of_eq [THEN iffD1], auto)
+
+
+(** intify: coercion from anything to int **)
+
+lemma intify_in_int [iff,TC]: "intify(x) : int"
+by (simp add: intify_def)
+
+lemma intify_ident [simp]: "n : int ==> intify(n) = n"
+by (simp add: intify_def)
+
+
+subsection{*Collapsing rules: to remove @{term intify}
+            from arithmetic expressions*}
+
+lemma intify_idem [simp]: "intify(intify(x)) = intify(x)"
+by simp
+
+lemma int_of_natify [simp]: "$# (natify(m)) = $# m"
+by (simp add: int_of_def)
+
+lemma zminus_intify [simp]: "$- (intify(m)) = $- m"
+by (simp add: zminus_def)
+
+(** Addition **)
+
+lemma zadd_intify1 [simp]: "intify(x) $+ y = x $+ y"
+by (simp add: zadd_def)
+
+lemma zadd_intify2 [simp]: "x $+ intify(y) = x $+ y"
+by (simp add: zadd_def)
+
+(** Subtraction **)
+
+lemma zdiff_intify1 [simp]:"intify(x) $- y = x $- y"
+by (simp add: zdiff_def)
+
+lemma zdiff_intify2 [simp]:"x $- intify(y) = x $- y"
+by (simp add: zdiff_def)
+
+(** Multiplication **)
+
+lemma zmult_intify1 [simp]:"intify(x) $* y = x $* y"
+by (simp add: zmult_def)
+
+lemma zmult_intify2 [simp]:"x $* intify(y) = x $* y"
+by (simp add: zmult_def)
+
+(** Orderings **)
+
+lemma zless_intify1 [simp]:"intify(x) $< y <-> x $< y"
+by (simp add: zless_def)
+
+lemma zless_intify2 [simp]:"x $< intify(y) <-> x $< y"
+by (simp add: zless_def)
+
+lemma zle_intify1 [simp]:"intify(x) $<= y <-> x $<= y"
+by (simp add: zle_def)
+
+lemma zle_intify2 [simp]:"x $<= intify(y) <-> x $<= y"
+by (simp add: zle_def)
+
+
+subsection{*@{term zminus}: unary negation on @{term int}*}
+
+lemma zminus_congruent: "congruent(intrel, %<x,y>. intrel``{<y,x>})"
+apply (unfold congruent_def, safe)
+apply (simp add: add_ac)
+done
+
+lemma raw_zminus_type: "z : int ==> raw_zminus(z) : int"
+apply (unfold int_def raw_zminus_def)
+apply (typecheck add: UN_equiv_class_type [OF equiv_intrel zminus_congruent])
+done
+
+lemma zminus_type [TC,iff]: "$-z : int"
+apply (unfold zminus_def)
+apply (simp add: zminus_def raw_zminus_type)
+done
+
+lemma raw_zminus_inject: 
+     "[| raw_zminus(z) = raw_zminus(w);  z: int;  w: int |] ==> z=w"
+apply (unfold int_def raw_zminus_def)
+apply (erule UN_equiv_class_inject [OF equiv_intrel zminus_congruent], safe)
+apply (auto dest: eq_intrelD simp add: add_ac)
+done
+
+lemma zminus_inject_intify [dest!]: "$-z = $-w ==> intify(z) = intify(w)"
+apply (unfold zminus_def)
+apply (blast dest!: raw_zminus_inject)
+done
+
+lemma zminus_inject: "[| $-z = $-w;  z: int;  w: int |] ==> z=w"
+by auto
+
+lemma raw_zminus: 
+    "[| x: nat;  y: nat |] ==> raw_zminus(intrel``{<x,y>}) = intrel `` {<y,x>}"
+apply (unfold raw_zminus_def)
+apply (simp add: UN_equiv_class [OF equiv_intrel zminus_congruent])
+done
+
+lemma zminus: 
+    "[| x: nat;  y: nat |]  
+     ==> $- (intrel``{<x,y>}) = intrel `` {<y,x>}"
+apply (unfold zminus_def)
+apply (simp (no_asm_simp) add: raw_zminus image_intrel_int)
+done
+
+lemma raw_zminus_zminus: "z : int ==> raw_zminus (raw_zminus(z)) = z"
+apply (unfold int_def)
+apply (auto simp add: raw_zminus)
+done
+
+lemma zminus_zminus_intify [simp]: "$- ($- z) = intify(z)"
+by (simp add: zminus_def raw_zminus_type raw_zminus_zminus)
+
+lemma zminus_int0 [simp]: "$- ($#0) = $#0"
+apply (unfold int_of_def)
+apply (simp add: zminus)
+done
+
+lemma zminus_zminus: "z : int ==> $- ($- z) = z"
+by simp
+
+
+subsection{*@{term znegative}: the test for negative integers*}
+
+(*No natural number is negative!*)
+lemma not_znegative_int_of [iff]: "~ znegative($# n)"
+apply (unfold znegative_def int_of_def, safe)
+apply (drule_tac psi = "?lhs=?rhs" in asm_rl)
+apply (drule_tac psi = "?lhs<?rhs" in asm_rl)
+apply (force simp add: add_le_self2 [THEN le_imp_not_lt] natify_succ)
+done
+
+lemma znegative_zminus_int_of [simp]: "znegative($- $# succ(n))"
+apply (unfold znegative_def int_of_def)
+apply (simp (no_asm_simp) add: zminus natify_succ)
+apply (blast intro: nat_0_le)
+done
+
+lemma not_znegative_imp_zero: "~ znegative($- $# n) ==> natify(n)=0"
+apply (unfold znegative_def int_of_def)
+apply (simp add: zminus image_singleton_iff)
+apply (drule_tac x = 0 in spec)
+apply (auto simp add: nat_into_Ord [THEN Ord_0_lt_iff, THEN iff_sym])
+done
+
+
+subsection{*@{term nat_of}: Coercion of an Integer to a Natural Number*}
+
+lemma nat_of_intify [simp]: "nat_of(intify(z)) = nat_of(z)"
+by (unfold nat_of_def, auto)
+
+lemma nat_of_int_of [simp]: "nat_of($# n) = natify(n)"
+apply (unfold nat_of_def raw_nat_of_def)
+apply (auto simp add: int_of_eq)
+done
+
+lemma raw_nat_of_type: "raw_nat_of(z) : nat"
+apply (unfold raw_nat_of_def, auto)
+apply (case_tac "EX! m. m: nat & z = int_of (m) ")
+apply (rule theI2)
+apply (simp_all add: the_0) 
+done
+
+lemma nat_of_type [iff,TC]: "nat_of(z) : nat"
+apply (unfold nat_of_def)
+apply (simp add: raw_nat_of_type)
+done
+
+subsection{*zmagnitude: magnitide of an integer, as a natural number*}
+
+lemma zmagnitude_int_of [simp]: "zmagnitude($# n) = natify(n)"
+apply (unfold zmagnitude_def)
+apply (auto simp add: int_of_eq)
+done
+
+lemma natify_int_of_eq: "natify(x)=n ==> $#x = $# n"
+apply (drule sym)
+apply (simp (no_asm_simp) add: int_of_eq)
+done
+
+lemma zmagnitude_zminus_int_of [simp]: "zmagnitude($- $# n) = natify(n)"
+apply (unfold zmagnitude_def)
+apply (rule the_equality)
+apply (auto dest!: not_znegative_imp_zero natify_int_of_eq
+            iff del: int_of_eq, auto)
+done
+
+lemma zmagnitude_type [iff,TC]: "zmagnitude(z) : nat"
+apply (unfold zmagnitude_def)
+apply (rule theI2, auto)
+done
+
+lemma not_zneg_int_of: 
+     "[| z: int; ~ znegative(z) |] ==> EX n:nat. z = $# n"
+apply (unfold int_def znegative_def int_of_def)
+apply (auto simp add: image_singleton_iff)
+apply (rename_tac i j)
+apply (drule_tac x = i in spec)
+apply (drule_tac x = j in spec)
+apply (rule bexI)
+apply (rule add_diff_inverse2 [symmetric], auto)
+apply (simp add: not_lt_iff_le)
+done
+
+lemma not_zneg_mag [simp]:
+     "[| z: int; ~ znegative(z) |] ==> $# (zmagnitude(z)) = z"
+by (drule not_zneg_int_of, auto)
+
+lemma zneg_int_of: 
+     "[| znegative(z); z: int |] ==> EX n:nat. z = $- ($# succ(n))"
+apply (unfold int_def znegative_def int_of_def)
+apply (auto dest!: less_imp_succ_add simp add: zminus image_singleton_iff)
+done
+
+lemma zneg_mag [simp]:
+     "[| znegative(z); z: int |] ==> $# (zmagnitude(z)) = $- z"
+apply (drule zneg_int_of, auto)
+done
+
+lemma int_cases: "z : int ==> EX n: nat. z = $# n | z = $- ($# succ(n))"
+apply (case_tac "znegative (z) ")
+prefer 2 apply (blast dest: not_zneg_mag sym)
+apply (blast dest: zneg_int_of)
+done
+
+lemma not_zneg_raw_nat_of:
+     "[| ~ znegative(z); z: int |] ==> $# (raw_nat_of(z)) = z"
+apply (drule not_zneg_int_of)
+apply (auto simp add: raw_nat_of_type)
+apply (auto simp add: raw_nat_of_def)
+done
+
+lemma not_zneg_nat_of_intify:
+     "~ znegative(intify(z)) ==> $# (nat_of(z)) = intify(z)"
+by (simp (no_asm_simp) add: nat_of_def not_zneg_raw_nat_of)
+
+lemma not_zneg_nat_of: "[| ~ znegative(z); z: int |] ==> $# (nat_of(z)) = z"
+apply (simp (no_asm_simp) add: not_zneg_nat_of_intify)
+done
+
+lemma zneg_nat_of [simp]: "znegative(intify(z)) ==> nat_of(z) = 0"
+by (unfold nat_of_def raw_nat_of_def, auto)
+
+
+subsection{*@{term zadd}: addition on int*}
+
+text{*Congruence Property for Addition*}
+lemma zadd_congruent2: 
+    "congruent2(intrel, %z1 z2.                       
+          let <x1,y1>=z1; <x2,y2>=z2                  
+                            in intrel``{<x1#+x2, y1#+y2>})"
+apply (unfold congruent2_def)
+(*Proof via congruent2_commuteI seems longer*)
+apply safe
+apply (simp (no_asm_simp) add: add_assoc Let_def)
+(*The rest should be trivial, but rearranging terms is hard
+  add_ac does not help rewriting with the assumptions.*)
+apply (rule_tac m1 = x1a in add_left_commute [THEN ssubst])
+apply (rule_tac m1 = x2a in add_left_commute [THEN ssubst])
+apply (simp (no_asm_simp) add: add_assoc [symmetric])
+done
+
+lemma raw_zadd_type: "[| z: int;  w: int |] ==> raw_zadd(z,w) : int"
+apply (unfold int_def raw_zadd_def)
+apply (rule UN_equiv_class_type2 [OF equiv_intrel zadd_congruent2], assumption+)
+apply (simp add: Let_def)
+done
+
+lemma zadd_type [iff,TC]: "z $+ w : int"
+by (simp add: zadd_def raw_zadd_type)
+
+lemma raw_zadd: 
+  "[| x1: nat; y1: nat;  x2: nat; y2: nat |]               
+   ==> raw_zadd (intrel``{<x1,y1>}, intrel``{<x2,y2>}) =   
+       intrel `` {<x1#+x2, y1#+y2>}"
+apply (unfold raw_zadd_def)
+apply (simp add: UN_equiv_class2 [OF equiv_intrel zadd_congruent2])
+apply (simp add: Let_def)
+done
+
+lemma zadd: 
+  "[| x1: nat; y1: nat;  x2: nat; y2: nat |]          
+   ==> (intrel``{<x1,y1>}) $+ (intrel``{<x2,y2>}) =   
+       intrel `` {<x1#+x2, y1#+y2>}"
+apply (unfold zadd_def)
+apply (simp (no_asm_simp) add: raw_zadd image_intrel_int)
+done
+
+lemma raw_zadd_int0: "z : int ==> raw_zadd ($#0,z) = z"
+apply (unfold int_def int_of_def)
+apply (auto simp add: raw_zadd)
+done
+
+lemma zadd_int0_intify [simp]: "$#0 $+ z = intify(z)"
+by (simp add: zadd_def raw_zadd_int0)
+
+lemma zadd_int0: "z: int ==> $#0 $+ z = z"
+by simp
+
+lemma raw_zminus_zadd_distrib: 
+     "[| z: int;  w: int |] ==> $- raw_zadd(z,w) = raw_zadd($- z, $- w)"
+apply (unfold int_def)
+apply (auto simp add: zminus raw_zadd)
+done
+
+lemma zminus_zadd_distrib [simp]: "$- (z $+ w) = $- z $+ $- w"
+by (simp add: zadd_def raw_zminus_zadd_distrib)
+
+lemma raw_zadd_commute:
+     "[| z: int;  w: int |] ==> raw_zadd(z,w) = raw_zadd(w,z)"
+apply (unfold int_def)
+apply (auto simp add: raw_zadd add_ac)
+done
+
+lemma zadd_commute: "z $+ w = w $+ z"
+by (simp add: zadd_def raw_zadd_commute)
+
+lemma raw_zadd_assoc: 
+    "[| z1: int;  z2: int;  z3: int |]    
+     ==> raw_zadd (raw_zadd(z1,z2),z3) = raw_zadd(z1,raw_zadd(z2,z3))"
+apply (unfold int_def)
+apply (auto simp add: raw_zadd add_assoc)
+done
+
+lemma zadd_assoc: "(z1 $+ z2) $+ z3 = z1 $+ (z2 $+ z3)"
+by (simp add: zadd_def raw_zadd_type raw_zadd_assoc)
+
+(*For AC rewriting*)
+lemma zadd_left_commute: "z1$+(z2$+z3) = z2$+(z1$+z3)"
+apply (simp add: zadd_assoc [symmetric])
+apply (simp add: zadd_commute)
+done
+
+(*Integer addition is an AC operator*)
+lemmas zadd_ac = zadd_assoc zadd_commute zadd_left_commute
+
+lemma int_of_add: "$# (m #+ n) = ($#m) $+ ($#n)"
+apply (unfold int_of_def)
+apply (simp add: zadd)
+done
+
+lemma int_succ_int_1: "$# succ(m) = $# 1 $+ ($# m)"
+by (simp add: int_of_add [symmetric] natify_succ)
+
+lemma int_of_diff: 
+     "[| m: nat;  n le m |] ==> $# (m #- n) = ($#m) $- ($#n)"
+apply (unfold int_of_def zdiff_def)
+apply (frule lt_nat_in_nat)
+apply (simp_all add: zadd zminus add_diff_inverse2)
+done
+
+lemma raw_zadd_zminus_inverse: "z : int ==> raw_zadd (z, $- z) = $#0"
+apply (unfold int_def int_of_def)
+apply (auto simp add: zminus raw_zadd add_commute)
+done
+
+lemma zadd_zminus_inverse [simp]: "z $+ ($- z) = $#0"
+apply (simp add: zadd_def)
+apply (subst zminus_intify [symmetric])
+apply (rule intify_in_int [THEN raw_zadd_zminus_inverse])
+done
+
+lemma zadd_zminus_inverse2 [simp]: "($- z) $+ z = $#0"
+by (simp add: zadd_commute zadd_zminus_inverse)
+
+lemma zadd_int0_right_intify [simp]: "z $+ $#0 = intify(z)"
+by (rule trans [OF zadd_commute zadd_int0_intify])
+
+lemma zadd_int0_right: "z:int ==> z $+ $#0 = z"
+by simp
+
+
+subsection{*@{term zmult}: Integer Multiplication*}
+
+text{*Congruence property for multiplication*}
+lemma zmult_congruent2:
+    "congruent2(intrel, %p1 p2.                  
+                split(%x1 y1. split(%x2 y2.      
+                    intrel``{<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}, p2), p1))"
+apply (rule equiv_intrel [THEN congruent2_commuteI], auto)
+(*Proof that zmult is congruent in one argument*)
+apply (rename_tac x y)
+apply (frule_tac t = "%u. x#*u" in sym [THEN subst_context])
+apply (drule_tac t = "%u. y#*u" in subst_context)
+apply (erule add_left_cancel)+
+apply (simp_all add: add_mult_distrib_left)
+done
+
+
+lemma raw_zmult_type: "[| z: int;  w: int |] ==> raw_zmult(z,w) : int"
+apply (unfold int_def raw_zmult_def)
+apply (rule UN_equiv_class_type2 [OF equiv_intrel zmult_congruent2], assumption+)
+apply (simp add: Let_def)
+done
+
+lemma zmult_type [iff,TC]: "z $* w : int"
+by (simp add: zmult_def raw_zmult_type)
+
+lemma raw_zmult: 
+     "[| x1: nat; y1: nat;  x2: nat; y2: nat |]     
+      ==> raw_zmult(intrel``{<x1,y1>}, intrel``{<x2,y2>}) =      
+          intrel `` {<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}"
+apply (unfold raw_zmult_def)
+apply (simp add: UN_equiv_class2 [OF equiv_intrel zmult_congruent2])
+done
+
+lemma zmult: 
+     "[| x1: nat; y1: nat;  x2: nat; y2: nat |]     
+      ==> (intrel``{<x1,y1>}) $* (intrel``{<x2,y2>}) =      
+          intrel `` {<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}"
+apply (unfold zmult_def)
+apply (simp add: raw_zmult image_intrel_int)
+done
+
+lemma raw_zmult_int0: "z : int ==> raw_zmult ($#0,z) = $#0"
+apply (unfold int_def int_of_def)
+apply (auto simp add: raw_zmult)
+done
+
+lemma zmult_int0 [simp]: "$#0 $* z = $#0"
+by (simp add: zmult_def raw_zmult_int0)
+
+lemma raw_zmult_int1: "z : int ==> raw_zmult ($#1,z) = z"
+apply (unfold int_def int_of_def)
+apply (auto simp add: raw_zmult)
+done
+
+lemma zmult_int1_intify [simp]: "$#1 $* z = intify(z)"
+by (simp add: zmult_def raw_zmult_int1)
+
+lemma zmult_int1: "z : int ==> $#1 $* z = z"
+by simp
+
+lemma raw_zmult_commute:
+     "[| z: int;  w: int |] ==> raw_zmult(z,w) = raw_zmult(w,z)"
+apply (unfold int_def)
+apply (auto simp add: raw_zmult add_ac mult_ac)
+done
+
+lemma zmult_commute: "z $* w = w $* z"
+by (simp add: zmult_def raw_zmult_commute)
+
+lemma raw_zmult_zminus: 
+     "[| z: int;  w: int |] ==> raw_zmult($- z, w) = $- raw_zmult(z, w)"
+apply (unfold int_def)
+apply (auto simp add: zminus raw_zmult add_ac)
+done
+
+lemma zmult_zminus [simp]: "($- z) $* w = $- (z $* w)"
+apply (simp add: zmult_def raw_zmult_zminus)
+apply (subst zminus_intify [symmetric], rule raw_zmult_zminus, auto)
+done
+
+lemma zmult_zminus_right [simp]: "w $* ($- z) = $- (w $* z)"
+by (simp add: zmult_commute [of w])
+
+lemma raw_zmult_assoc: 
+    "[| z1: int;  z2: int;  z3: int |]    
+     ==> raw_zmult (raw_zmult(z1,z2),z3) = raw_zmult(z1,raw_zmult(z2,z3))"
+apply (unfold int_def)
+apply (auto simp add: raw_zmult add_mult_distrib_left add_ac mult_ac)
+done
+
+lemma zmult_assoc: "(z1 $* z2) $* z3 = z1 $* (z2 $* z3)"
+by (simp add: zmult_def raw_zmult_type raw_zmult_assoc)
+
+(*For AC rewriting*)
+lemma zmult_left_commute: "z1$*(z2$*z3) = z2$*(z1$*z3)"
+apply (simp add: zmult_assoc [symmetric])
+apply (simp add: zmult_commute)
+done
+
+(*Integer multiplication is an AC operator*)
+lemmas zmult_ac = zmult_assoc zmult_commute zmult_left_commute
+
+lemma raw_zadd_zmult_distrib: 
+    "[| z1: int;  z2: int;  w: int |]   
+     ==> raw_zmult(raw_zadd(z1,z2), w) =  
+         raw_zadd (raw_zmult(z1,w), raw_zmult(z2,w))"
+apply (unfold int_def)
+apply (auto simp add: raw_zadd raw_zmult add_mult_distrib_left add_ac mult_ac)
+done
+
+lemma zadd_zmult_distrib: "(z1 $+ z2) $* w = (z1 $* w) $+ (z2 $* w)"
+by (simp add: zmult_def zadd_def raw_zadd_type raw_zmult_type 
+              raw_zadd_zmult_distrib)
+
+lemma zadd_zmult_distrib2: "w $* (z1 $+ z2) = (w $* z1) $+ (w $* z2)"
+by (simp add: zmult_commute [of w] zadd_zmult_distrib)
+
+lemmas int_typechecks = 
+  int_of_type zminus_type zmagnitude_type zadd_type zmult_type
+
+
+(*** Subtraction laws ***)
+
+lemma zdiff_type [iff,TC]: "z $- w : int"
+by (simp add: zdiff_def)
+
+lemma zminus_zdiff_eq [simp]: "$- (z $- y) = y $- z"
+by (simp add: zdiff_def zadd_commute)
+
+lemma zdiff_zmult_distrib: "(z1 $- z2) $* w = (z1 $* w) $- (z2 $* w)"
+apply (unfold zdiff_def)
+apply (subst zadd_zmult_distrib)
+apply (simp add: zmult_zminus)
+done
+
+lemma zdiff_zmult_distrib2: "w $* (z1 $- z2) = (w $* z1) $- (w $* z2)"
+by (simp add: zmult_commute [of w] zdiff_zmult_distrib)
+
+lemma zadd_zdiff_eq: "x $+ (y $- z) = (x $+ y) $- z"
+by (simp add: zdiff_def zadd_ac)
+
+lemma zdiff_zadd_eq: "(x $- y) $+ z = (x $+ z) $- y"
+by (simp add: zdiff_def zadd_ac)
+
+
+subsection{*The "Less Than" Relation*}
+
+(*"Less than" is a linear ordering*)
+lemma zless_linear_lemma: 
+     "[| z: int; w: int |] ==> z$<w | z=w | w$<z"
+apply (unfold int_def zless_def znegative_def zdiff_def, auto)
+apply (simp add: zadd zminus image_iff Bex_def)
+apply (rule_tac i = "xb#+ya" and j = "xc #+ y" in Ord_linear_lt)
+apply (force dest!: spec simp add: add_ac)+
+done
+
+lemma zless_linear: "z$<w | intify(z)=intify(w) | w$<z"
+apply (cut_tac z = " intify (z) " and w = " intify (w) " in zless_linear_lemma)
+apply auto
+done
+
+lemma zless_not_refl [iff]: "~ (z$<z)"
+apply (auto simp add: zless_def znegative_def int_of_def zdiff_def)
+apply (rotate_tac 2, auto)
+done
+
+lemma neq_iff_zless: "[| x: int; y: int |] ==> (x ~= y) <-> (x $< y | y $< x)"
+by (cut_tac z = x and w = y in zless_linear, auto)
+
+lemma zless_imp_intify_neq: "w $< z ==> intify(w) ~= intify(z)"
+apply auto
+apply (subgoal_tac "~ (intify (w) $< intify (z))")
+apply (erule_tac [2] ssubst)
+apply (simp (no_asm_use))
+apply auto
+done
+
+(*This lemma allows direct proofs of other <-properties*)
+lemma zless_imp_succ_zadd_lemma: 
+    "[| w $< z; w: int; z: int |] ==> (EX n: nat. z = w $+ $#(succ(n)))"
+apply (unfold zless_def znegative_def zdiff_def int_def)
+apply (auto dest!: less_imp_succ_add simp add: zadd zminus int_of_def)
+apply (rule_tac x = k in bexI)
+apply (erule add_left_cancel, auto)
+done
+
+lemma zless_imp_succ_zadd:
+     "w $< z ==> (EX n: nat. w $+ $#(succ(n)) = intify(z))"
+apply (subgoal_tac "intify (w) $< intify (z) ")
+apply (drule_tac w = "intify (w) " in zless_imp_succ_zadd_lemma)
+apply auto
+done
+
+lemma zless_succ_zadd_lemma: 
+    "w : int ==> w $< w $+ $# succ(n)"
+apply (unfold zless_def znegative_def zdiff_def int_def)
+apply (auto simp add: zadd zminus int_of_def image_iff)
+apply (rule_tac x = 0 in exI, auto)
+done
+
+lemma zless_succ_zadd: "w $< w $+ $# succ(n)"
+by (cut_tac intify_in_int [THEN zless_succ_zadd_lemma], auto)
+
+lemma zless_iff_succ_zadd:
+     "w $< z <-> (EX n: nat. w $+ $#(succ(n)) = intify(z))"
+apply (rule iffI)
+apply (erule zless_imp_succ_zadd, auto)
+apply (rename_tac "n")
+apply (cut_tac w = w and n = n in zless_succ_zadd, auto)
+done
+
+lemma zless_int_of [simp]: "[| m: nat; n: nat |] ==> ($#m $< $#n) <-> (m<n)"
+apply (simp add: less_iff_succ_add zless_iff_succ_zadd int_of_add [symmetric])
+apply (blast intro: sym)
+done
+
+lemma zless_trans_lemma: 
+    "[| x $< y; y $< z; x: int; y : int; z: int |] ==> x $< z"
+apply (unfold zless_def znegative_def zdiff_def int_def)
+apply (auto simp add: zadd zminus image_iff)
+apply (rename_tac x1 x2 y1 y2)
+apply (rule_tac x = "x1#+x2" in exI)
+apply (rule_tac x = "y1#+y2" in exI)
+apply (auto simp add: add_lt_mono)
+apply (rule sym)
+apply (erule add_left_cancel)+
+apply auto
+done
+
+lemma zless_trans: "[| x $< y; y $< z |] ==> x $< z"
+apply (subgoal_tac "intify (x) $< intify (z) ")
+apply (rule_tac [2] y = "intify (y) " in zless_trans_lemma)
+apply auto
+done
+
+lemma zless_not_sym: "z $< w ==> ~ (w $< z)"
+by (blast dest: zless_trans)
+
+(* [| z $< w; ~ P ==> w $< z |] ==> P *)
+lemmas zless_asym = zless_not_sym [THEN swap, standard]
+
+lemma zless_imp_zle: "z $< w ==> z $<= w"
+apply (unfold zle_def)
+apply (blast elim: zless_asym)
+done
+
+lemma zle_linear: "z $<= w | w $<= z"
+apply (simp add: zle_def)
+apply (cut_tac zless_linear, blast)
+done
+
+
+subsection{*Less Than or Equals*}
+
+lemma zle_refl: "z $<= z"
+by (unfold zle_def, auto)
+
+lemma zle_eq_refl: "x=y ==> x $<= y"
+by (simp add: zle_refl)
+
+lemma zle_anti_sym_intify: "[| x $<= y; y $<= x |] ==> intify(x) = intify(y)"
+apply (unfold zle_def, auto)
+apply (blast dest: zless_trans)
+done
+
+lemma zle_anti_sym: "[| x $<= y; y $<= x; x: int; y: int |] ==> x=y"
+by (drule zle_anti_sym_intify, auto)
+
+lemma zle_trans_lemma:
+     "[| x: int; y: int; z: int; x $<= y; y $<= z |] ==> x $<= z"
+apply (unfold zle_def, auto)
+apply (blast intro: zless_trans)
+done
+
+lemma zle_trans: "[| x $<= y; y $<= z |] ==> x $<= z"
+apply (subgoal_tac "intify (x) $<= intify (z) ")
+apply (rule_tac [2] y = "intify (y) " in zle_trans_lemma)
+apply auto
+done
+
+lemma zle_zless_trans: "[| i $<= j; j $< k |] ==> i $< k"
+apply (auto simp add: zle_def)
+apply (blast intro: zless_trans)
+apply (simp add: zless_def zdiff_def zadd_def)
+done
+
+lemma zless_zle_trans: "[| i $< j; j $<= k |] ==> i $< k"
+apply (auto simp add: zle_def)
+apply (blast intro: zless_trans)
+apply (simp add: zless_def zdiff_def zminus_def)
+done
+
+lemma not_zless_iff_zle: "~ (z $< w) <-> (w $<= z)"
+apply (cut_tac z = z and w = w in zless_linear)
+apply (auto dest: zless_trans simp add: zle_def)
+apply (auto dest!: zless_imp_intify_neq)
+done
+
+lemma not_zle_iff_zless: "~ (z $<= w) <-> (w $< z)"
+by (simp add: not_zless_iff_zle [THEN iff_sym])
+
+
+subsection{*More subtraction laws (for @{text zcompare_rls})*}
+
+lemma zdiff_zdiff_eq: "(x $- y) $- z = x $- (y $+ z)"
+by (simp add: zdiff_def zadd_ac)
+
+lemma zdiff_zdiff_eq2: "x $- (y $- z) = (x $+ z) $- y"
+by (simp add: zdiff_def zadd_ac)
+
+lemma zdiff_zless_iff: "(x$-y $< z) <-> (x $< z $+ y)"
+apply (unfold zless_def zdiff_def)
+apply (simp add: zadd_ac)
+done
+
+lemma zless_zdiff_iff: "(x $< z$-y) <-> (x $+ y $< z)"
+apply (unfold zless_def zdiff_def)
+apply (simp add: zadd_ac)
+done
+
+lemma zdiff_eq_iff: "[| x: int; z: int |] ==> (x$-y = z) <-> (x = z $+ y)"
+apply (unfold zdiff_def)
+apply (auto simp add: zadd_assoc)
+done
+
+lemma eq_zdiff_iff: "[| x: int; z: int |] ==> (x = z$-y) <-> (x $+ y = z)"
+apply (unfold zdiff_def)
+apply (auto simp add: zadd_assoc)
+done
+
+lemma zdiff_zle_iff_lemma:
+     "[| x: int; z: int |] ==> (x$-y $<= z) <-> (x $<= z $+ y)"
+apply (unfold zle_def)
+apply (auto simp add: zdiff_eq_iff zdiff_zless_iff)
+done
+
+lemma zdiff_zle_iff: "(x$-y $<= z) <-> (x $<= z $+ y)"
+by (cut_tac zdiff_zle_iff_lemma [OF intify_in_int intify_in_int], simp)
+
+lemma zle_zdiff_iff_lemma:
+     "[| x: int; z: int |] ==>(x $<= z$-y) <-> (x $+ y $<= z)"
+apply (unfold zle_def)
+apply (auto simp add: zdiff_eq_iff zless_zdiff_iff)
+apply (auto simp add: zdiff_def zadd_assoc)
+done
+
+lemma zle_zdiff_iff: "(x $<= z$-y) <-> (x $+ y $<= z)"
+by (cut_tac zle_zdiff_iff_lemma [ OF intify_in_int intify_in_int], simp)
+
+text{*This list of rewrites simplifies (in)equalities by bringing subtractions
+  to the top and then moving negative terms to the other side.  
+  Use with @{text zadd_ac}*}
+lemmas zcompare_rls =
+     zdiff_def [symmetric]
+     zadd_zdiff_eq zdiff_zadd_eq zdiff_zdiff_eq zdiff_zdiff_eq2 
+     zdiff_zless_iff zless_zdiff_iff zdiff_zle_iff zle_zdiff_iff 
+     zdiff_eq_iff eq_zdiff_iff
+
+
+subsection{*Monotonicity and Cancellation Results for Instantiation
+     of the CancelNumerals Simprocs*}
+
+lemma zadd_left_cancel:
+     "[| w: int; w': int |] ==> (z $+ w' = z $+ w) <-> (w' = w)"
+apply safe
+apply (drule_tac t = "%x. x $+ ($-z) " in subst_context)
+apply (simp add: zadd_ac)
+done
+
+lemma zadd_left_cancel_intify [simp]:
+     "(z $+ w' = z $+ w) <-> intify(w') = intify(w)"
+apply (rule iff_trans)
+apply (rule_tac [2] zadd_left_cancel, auto)
+done
+
+lemma zadd_right_cancel:
+     "[| w: int; w': int |] ==> (w' $+ z = w $+ z) <-> (w' = w)"
+apply safe
+apply (drule_tac t = "%x. x $+ ($-z) " in subst_context)
+apply (simp add: zadd_ac)
+done
+
+lemma zadd_right_cancel_intify [simp]:
+     "(w' $+ z = w $+ z) <-> intify(w') = intify(w)"
+apply (rule iff_trans)
+apply (rule_tac [2] zadd_right_cancel, auto)
+done
+
+lemma zadd_right_cancel_zless [simp]: "(w' $+ z $< w $+ z) <-> (w' $< w)"
+apply (simp add: zdiff_zless_iff [THEN iff_sym])
+apply (simp add: zdiff_def zadd_assoc)
+done
+
+lemma zadd_left_cancel_zless [simp]: "(z $+ w' $< z $+ w) <-> (w' $< w)"
+by (simp add: zadd_commute [of z] zadd_right_cancel_zless)
+
+lemma zadd_right_cancel_zle [simp]: "(w' $+ z $<= w $+ z) <-> w' $<= w"
+by (simp add: zle_def)
+
+lemma zadd_left_cancel_zle [simp]: "(z $+ w' $<= z $+ w) <->  w' $<= w"
+by (simp add: zadd_commute [of z]  zadd_right_cancel_zle)
+
+
+(*"v $<= w ==> v$+z $<= w$+z"*)
+lemmas zadd_zless_mono1 = zadd_right_cancel_zless [THEN iffD2, standard]
+
+(*"v $<= w ==> z$+v $<= z$+w"*)
+lemmas zadd_zless_mono2 = zadd_left_cancel_zless [THEN iffD2, standard]
+
+(*"v $<= w ==> v$+z $<= w$+z"*)
+lemmas zadd_zle_mono1 = zadd_right_cancel_zle [THEN iffD2, standard]
+
+(*"v $<= w ==> z$+v $<= z$+w"*)
+lemmas zadd_zle_mono2 = zadd_left_cancel_zle [THEN iffD2, standard]
+
+lemma zadd_zle_mono: "[| w' $<= w; z' $<= z |] ==> w' $+ z' $<= w $+ z"
+by (erule zadd_zle_mono1 [THEN zle_trans], simp)
+
+lemma zadd_zless_mono: "[| w' $< w; z' $<= z |] ==> w' $+ z' $< w $+ z"
+by (erule zadd_zless_mono1 [THEN zless_zle_trans], simp)
+
+
+subsection{*Comparison laws*}
+
+lemma zminus_zless_zminus [simp]: "($- x $< $- y) <-> (y $< x)"
+by (simp add: zless_def zdiff_def zadd_ac)
+
+lemma zminus_zle_zminus [simp]: "($- x $<= $- y) <-> (y $<= x)"
+by (simp add: not_zless_iff_zle [THEN iff_sym])
+
+subsubsection{*More inequality lemmas*}
+
+lemma equation_zminus: "[| x: int;  y: int |] ==> (x = $- y) <-> (y = $- x)"
+by auto
+
+lemma zminus_equation: "[| x: int;  y: int |] ==> ($- x = y) <-> ($- y = x)"
+by auto
+
+lemma equation_zminus_intify: "(intify(x) = $- y) <-> (intify(y) = $- x)"
+apply (cut_tac x = "intify (x) " and y = "intify (y) " in equation_zminus)
+apply auto
+done
+
+lemma zminus_equation_intify: "($- x = intify(y)) <-> ($- y = intify(x))"
+apply (cut_tac x = "intify (x) " and y = "intify (y) " in zminus_equation)
+apply auto
+done
+
+
+subsubsection{*The next several equations are permutative: watch out!*}
+
+lemma zless_zminus: "(x $< $- y) <-> (y $< $- x)"
+by (simp add: zless_def zdiff_def zadd_ac)
+
+lemma zminus_zless: "($- x $< y) <-> ($- y $< x)"
+by (simp add: zless_def zdiff_def zadd_ac)
+
+lemma zle_zminus: "(x $<= $- y) <-> (y $<= $- x)"
+by (simp add: not_zless_iff_zle [THEN iff_sym] zminus_zless)
+
+lemma zminus_zle: "($- x $<= y) <-> ($- y $<= x)"
+by (simp add: not_zless_iff_zle [THEN iff_sym] zless_zminus)
+
+ML
+{*
+val zdiff_def = thm "zdiff_def";
+val int_of_type = thm "int_of_type";
+val int_of_eq = thm "int_of_eq";
+val int_of_inject = thm "int_of_inject";
+val intify_in_int = thm "intify_in_int";
+val intify_ident = thm "intify_ident";
+val intify_idem = thm "intify_idem";
+val int_of_natify = thm "int_of_natify";
+val zminus_intify = thm "zminus_intify";
+val zadd_intify1 = thm "zadd_intify1";
+val zadd_intify2 = thm "zadd_intify2";
+val zdiff_intify1 = thm "zdiff_intify1";
+val zdiff_intify2 = thm "zdiff_intify2";
+val zmult_intify1 = thm "zmult_intify1";
+val zmult_intify2 = thm "zmult_intify2";
+val zless_intify1 = thm "zless_intify1";
+val zless_intify2 = thm "zless_intify2";
+val zle_intify1 = thm "zle_intify1";
+val zle_intify2 = thm "zle_intify2";
+val zminus_congruent = thm "zminus_congruent";
+val zminus_type = thm "zminus_type";
+val zminus_inject_intify = thm "zminus_inject_intify";
+val zminus_inject = thm "zminus_inject";
+val zminus = thm "zminus";
+val zminus_zminus_intify = thm "zminus_zminus_intify";
+val zminus_int0 = thm "zminus_int0";
+val zminus_zminus = thm "zminus_zminus";
+val not_znegative_int_of = thm "not_znegative_int_of";
+val znegative_zminus_int_of = thm "znegative_zminus_int_of";
+val not_znegative_imp_zero = thm "not_znegative_imp_zero";
+val nat_of_intify = thm "nat_of_intify";
+val nat_of_int_of = thm "nat_of_int_of";
+val nat_of_type = thm "nat_of_type";
+val zmagnitude_int_of = thm "zmagnitude_int_of";
+val natify_int_of_eq = thm "natify_int_of_eq";
+val zmagnitude_zminus_int_of = thm "zmagnitude_zminus_int_of";
+val zmagnitude_type = thm "zmagnitude_type";
+val not_zneg_int_of = thm "not_zneg_int_of";
+val not_zneg_mag = thm "not_zneg_mag";
+val zneg_int_of = thm "zneg_int_of";
+val zneg_mag = thm "zneg_mag";
+val int_cases = thm "int_cases";
+val not_zneg_nat_of_intify = thm "not_zneg_nat_of_intify";
+val not_zneg_nat_of = thm "not_zneg_nat_of";
+val zneg_nat_of = thm "zneg_nat_of";
+val zadd_congruent2 = thm "zadd_congruent2";
+val zadd_type = thm "zadd_type";
+val zadd = thm "zadd";
+val zadd_int0_intify = thm "zadd_int0_intify";
+val zadd_int0 = thm "zadd_int0";
+val zminus_zadd_distrib = thm "zminus_zadd_distrib";
+val zadd_commute = thm "zadd_commute";
+val zadd_assoc = thm "zadd_assoc";
+val zadd_left_commute = thm "zadd_left_commute";
+val zadd_ac = thms "zadd_ac";
+val int_of_add = thm "int_of_add";
+val int_succ_int_1 = thm "int_succ_int_1";
+val int_of_diff = thm "int_of_diff";
+val zadd_zminus_inverse = thm "zadd_zminus_inverse";
+val zadd_zminus_inverse2 = thm "zadd_zminus_inverse2";
+val zadd_int0_right_intify = thm "zadd_int0_right_intify";
+val zadd_int0_right = thm "zadd_int0_right";
+val zmult_congruent2 = thm "zmult_congruent2";
+val zmult_type = thm "zmult_type";
+val zmult = thm "zmult";
+val zmult_int0 = thm "zmult_int0";
+val zmult_int1_intify = thm "zmult_int1_intify";
+val zmult_int1 = thm "zmult_int1";
+val zmult_commute = thm "zmult_commute";
+val zmult_zminus = thm "zmult_zminus";
+val zmult_zminus_right = thm "zmult_zminus_right";
+val zmult_assoc = thm "zmult_assoc";
+val zmult_left_commute = thm "zmult_left_commute";
+val zmult_ac = thms "zmult_ac";
+val zadd_zmult_distrib = thm "zadd_zmult_distrib";
+val zadd_zmult_distrib2 = thm "zadd_zmult_distrib2";
+val int_typechecks = thms "int_typechecks";
+val zdiff_type = thm "zdiff_type";
+val zminus_zdiff_eq = thm "zminus_zdiff_eq";
+val zdiff_zmult_distrib = thm "zdiff_zmult_distrib";
+val zdiff_zmult_distrib2 = thm "zdiff_zmult_distrib2";
+val zadd_zdiff_eq = thm "zadd_zdiff_eq";
+val zdiff_zadd_eq = thm "zdiff_zadd_eq";
+val zless_linear = thm "zless_linear";
+val zless_not_refl = thm "zless_not_refl";
+val neq_iff_zless = thm "neq_iff_zless";
+val zless_imp_intify_neq = thm "zless_imp_intify_neq";
+val zless_imp_succ_zadd = thm "zless_imp_succ_zadd";
+val zless_succ_zadd = thm "zless_succ_zadd";
+val zless_iff_succ_zadd = thm "zless_iff_succ_zadd";
+val zless_int_of = thm "zless_int_of";
+val zless_trans = thm "zless_trans";
+val zless_not_sym = thm "zless_not_sym";
+val zless_asym = thm "zless_asym";
+val zless_imp_zle = thm "zless_imp_zle";
+val zle_linear = thm "zle_linear";
+val zle_refl = thm "zle_refl";
+val zle_eq_refl = thm "zle_eq_refl";
+val zle_anti_sym_intify = thm "zle_anti_sym_intify";
+val zle_anti_sym = thm "zle_anti_sym";
+val zle_trans = thm "zle_trans";
+val zle_zless_trans = thm "zle_zless_trans";
+val zless_zle_trans = thm "zless_zle_trans";
+val not_zless_iff_zle = thm "not_zless_iff_zle";
+val not_zle_iff_zless = thm "not_zle_iff_zless";
+val zdiff_zdiff_eq = thm "zdiff_zdiff_eq";
+val zdiff_zdiff_eq2 = thm "zdiff_zdiff_eq2";
+val zdiff_zless_iff = thm "zdiff_zless_iff";
+val zless_zdiff_iff = thm "zless_zdiff_iff";
+val zdiff_eq_iff = thm "zdiff_eq_iff";
+val eq_zdiff_iff = thm "eq_zdiff_iff";
+val zdiff_zle_iff = thm "zdiff_zle_iff";
+val zle_zdiff_iff = thm "zle_zdiff_iff";
+val zcompare_rls = thms "zcompare_rls";
+val zadd_left_cancel = thm "zadd_left_cancel";
+val zadd_left_cancel_intify = thm "zadd_left_cancel_intify";
+val zadd_right_cancel = thm "zadd_right_cancel";
+val zadd_right_cancel_intify = thm "zadd_right_cancel_intify";
+val zadd_right_cancel_zless = thm "zadd_right_cancel_zless";
+val zadd_left_cancel_zless = thm "zadd_left_cancel_zless";
+val zadd_right_cancel_zle = thm "zadd_right_cancel_zle";
+val zadd_left_cancel_zle = thm "zadd_left_cancel_zle";
+val zadd_zless_mono1 = thm "zadd_zless_mono1";
+val zadd_zless_mono2 = thm "zadd_zless_mono2";
+val zadd_zle_mono1 = thm "zadd_zle_mono1";
+val zadd_zle_mono2 = thm "zadd_zle_mono2";
+val zadd_zle_mono = thm "zadd_zle_mono";
+val zadd_zless_mono = thm "zadd_zless_mono";
+val zminus_zless_zminus = thm "zminus_zless_zminus";
+val zminus_zle_zminus = thm "zminus_zle_zminus";
+val equation_zminus = thm "equation_zminus";
+val zminus_equation = thm "zminus_equation";
+val equation_zminus_intify = thm "equation_zminus_intify";
+val zminus_equation_intify = thm "zminus_equation_intify";
+val zless_zminus = thm "zless_zminus";
+val zminus_zless = thm "zminus_zless";
+val zle_zminus = thm "zle_zminus";
+val zminus_zle = thm "zminus_zle";
+*}
+
+
 end