src/HOL/Algebra/Ring_Divisibility.thy
changeset 80914 d97fdabd9e2b
parent 70160 8e9100dcde52
child 81438 95c9af7483b1
--- a/src/HOL/Algebra/Ring_Divisibility.thy	Fri Sep 20 19:07:10 2024 +0200
+++ b/src/HOL/Algebra/Ring_Divisibility.thy	Fri Sep 20 19:51:08 2024 +0200
@@ -47,10 +47,10 @@
   " \<lbrakk> a \<in> carrier R - { \<zero> }; b \<in> carrier R - { \<zero> } \<rbrakk> \<Longrightarrow>
    \<exists>q r. q \<in> carrier R \<and> r \<in> carrier R \<and> a = (b \<otimes> q) \<oplus> r \<and> ((r = \<zero>) \<or> (\<phi> r < \<phi> b))"
 
-definition ring_irreducible :: "('a, 'b) ring_scheme \<Rightarrow> 'a \<Rightarrow> bool" ("ring'_irreducible\<index>")
+definition ring_irreducible :: "('a, 'b) ring_scheme \<Rightarrow> 'a \<Rightarrow> bool" (\<open>ring'_irreducible\<index>\<close>)
   where "ring_irreducible\<^bsub>R\<^esub> a \<longleftrightarrow> (a \<noteq> \<zero>\<^bsub>R\<^esub>) \<and> (irreducible R a)"
 
-definition ring_prime :: "('a, 'b) ring_scheme \<Rightarrow> 'a \<Rightarrow> bool" ("ring'_prime\<index>")
+definition ring_prime :: "('a, 'b) ring_scheme \<Rightarrow> 'a \<Rightarrow> bool" (\<open>ring'_prime\<index>\<close>)
   where "ring_prime\<^bsub>R\<^esub> a \<longleftrightarrow> (a \<noteq> \<zero>\<^bsub>R\<^esub>) \<and> (prime R a)"