--- a/src/Pure/Examples/First_Order_Logic.thy Fri Sep 20 19:07:10 2024 +0200
+++ b/src/Pure/Examples/First_Order_Logic.thy Fri Sep 20 19:51:08 2024 +0200
@@ -18,21 +18,21 @@
typedecl i
typedecl o
-judgment Trueprop :: "o \<Rightarrow> prop" ("_" 5)
+judgment Trueprop :: "o \<Rightarrow> prop" (\<open>_\<close> 5)
subsection \<open>Propositional logic\<close>
-axiomatization false :: o ("\<bottom>")
+axiomatization false :: o (\<open>\<bottom>\<close>)
where falseE [elim]: "\<bottom> \<Longrightarrow> A"
-axiomatization imp :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<longrightarrow>" 25)
+axiomatization imp :: "o \<Rightarrow> o \<Rightarrow> o" (infixr \<open>\<longrightarrow>\<close> 25)
where impI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> A \<longrightarrow> B"
and mp [dest]: "A \<longrightarrow> B \<Longrightarrow> A \<Longrightarrow> B"
-axiomatization conj :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<and>" 35)
+axiomatization conj :: "o \<Rightarrow> o \<Rightarrow> o" (infixr \<open>\<and>\<close> 35)
where conjI [intro]: "A \<Longrightarrow> B \<Longrightarrow> A \<and> B"
and conjD1: "A \<and> B \<Longrightarrow> A"
and conjD2: "A \<and> B \<Longrightarrow> B"
@@ -48,20 +48,20 @@
qed
-axiomatization disj :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<or>" 30)
+axiomatization disj :: "o \<Rightarrow> o \<Rightarrow> o" (infixr \<open>\<or>\<close> 30)
where disjE [elim]: "A \<or> B \<Longrightarrow> (A \<Longrightarrow> C) \<Longrightarrow> (B \<Longrightarrow> C) \<Longrightarrow> C"
and disjI1 [intro]: "A \<Longrightarrow> A \<or> B"
and disjI2 [intro]: "B \<Longrightarrow> A \<or> B"
-definition true :: o ("\<top>")
+definition true :: o (\<open>\<top>\<close>)
where "\<top> \<equiv> \<bottom> \<longrightarrow> \<bottom>"
theorem trueI [intro]: \<top>
unfolding true_def ..
-definition not :: "o \<Rightarrow> o" ("\<not> _" [40] 40)
+definition not :: "o \<Rightarrow> o" (\<open>\<not> _\<close> [40] 40)
where "\<not> A \<equiv> A \<longrightarrow> \<bottom>"
theorem notI [intro]: "(A \<Longrightarrow> \<bottom>) \<Longrightarrow> \<not> A"
@@ -76,7 +76,7 @@
qed
-definition iff :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<longleftrightarrow>" 25)
+definition iff :: "o \<Rightarrow> o \<Rightarrow> o" (infixr \<open>\<longleftrightarrow>\<close> 25)
where "A \<longleftrightarrow> B \<equiv> (A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
theorem iffI [intro]:
@@ -112,7 +112,7 @@
subsection \<open>Equality\<close>
-axiomatization equal :: "i \<Rightarrow> i \<Rightarrow> o" (infixl "=" 50)
+axiomatization equal :: "i \<Rightarrow> i \<Rightarrow> o" (infixl \<open>=\<close> 50)
where refl [intro]: "x = x"
and subst: "x = y \<Longrightarrow> P x \<Longrightarrow> P y"
@@ -129,11 +129,11 @@
subsection \<open>Quantifiers\<close>
-axiomatization All :: "(i \<Rightarrow> o) \<Rightarrow> o" (binder "\<forall>" 10)
+axiomatization All :: "(i \<Rightarrow> o) \<Rightarrow> o" (binder \<open>\<forall>\<close> 10)
where allI [intro]: "(\<And>x. P x) \<Longrightarrow> \<forall>x. P x"
and allD [dest]: "\<forall>x. P x \<Longrightarrow> P a"
-axiomatization Ex :: "(i \<Rightarrow> o) \<Rightarrow> o" (binder "\<exists>" 10)
+axiomatization Ex :: "(i \<Rightarrow> o) \<Rightarrow> o" (binder \<open>\<exists>\<close> 10)
where exI [intro]: "P a \<Longrightarrow> \<exists>x. P x"
and exE [elim]: "\<exists>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> C) \<Longrightarrow> C"