--- a/src/Pure/Examples/Higher_Order_Logic.thy Fri Sep 20 19:07:10 2024 +0200
+++ b/src/Pure/Examples/Higher_Order_Logic.thy Fri Sep 20 19:51:08 2024 +0200
@@ -27,16 +27,16 @@
instance o :: type ..
instance "fun" :: (type, type) type ..
-judgment Trueprop :: "o \<Rightarrow> prop" ("_" 5)
+judgment Trueprop :: "o \<Rightarrow> prop" (\<open>_\<close> 5)
section \<open>Minimal logic (axiomatization)\<close>
-axiomatization imp :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<longrightarrow>" 25)
+axiomatization imp :: "o \<Rightarrow> o \<Rightarrow> o" (infixr \<open>\<longrightarrow>\<close> 25)
where impI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> A \<longrightarrow> B"
and impE [dest, trans]: "A \<longrightarrow> B \<Longrightarrow> A \<Longrightarrow> B"
-axiomatization All :: "('a \<Rightarrow> o) \<Rightarrow> o" (binder "\<forall>" 10)
+axiomatization All :: "('a \<Rightarrow> o) \<Rightarrow> o" (binder \<open>\<forall>\<close> 10)
where allI [intro]: "(\<And>x. P x) \<Longrightarrow> \<forall>x. P x"
and allE [dest]: "\<forall>x. P x \<Longrightarrow> P a"
@@ -68,7 +68,7 @@
unfolding True_def ..
-definition not :: "o \<Rightarrow> o" ("\<not> _" [40] 40)
+definition not :: "o \<Rightarrow> o" (\<open>\<not> _\<close> [40] 40)
where "not \<equiv> \<lambda>A. A \<longrightarrow> False"
lemma notI [intro]:
@@ -91,7 +91,7 @@
lemmas contradiction = notE notE' \<comment> \<open>proof by contradiction in any order\<close>
-definition conj :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<and>" 35)
+definition conj :: "o \<Rightarrow> o \<Rightarrow> o" (infixr \<open>\<and>\<close> 35)
where "A \<and> B \<equiv> \<forall>C. (A \<longrightarrow> B \<longrightarrow> C) \<longrightarrow> C"
lemma conjI [intro]:
@@ -137,7 +137,7 @@
qed
-definition disj :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<or>" 30)
+definition disj :: "o \<Rightarrow> o \<Rightarrow> o" (infixr \<open>\<or>\<close> 30)
where "A \<or> B \<equiv> \<forall>C. (A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
lemma disjI1 [intro]:
@@ -190,7 +190,7 @@
qed
-definition Ex :: "('a \<Rightarrow> o) \<Rightarrow> o" (binder "\<exists>" 10)
+definition Ex :: "('a \<Rightarrow> o) \<Rightarrow> o" (binder \<open>\<exists>\<close> 10)
where "\<exists>x. P x \<equiv> \<forall>C. (\<forall>x. P x \<longrightarrow> C) \<longrightarrow> C"
lemma exI [intro]: "P a \<Longrightarrow> \<exists>x. P x"
@@ -227,14 +227,14 @@
subsubsection \<open>Extensional equality\<close>
-axiomatization equal :: "'a \<Rightarrow> 'a \<Rightarrow> o" (infixl "=" 50)
+axiomatization equal :: "'a \<Rightarrow> 'a \<Rightarrow> o" (infixl \<open>=\<close> 50)
where refl [intro]: "x = x"
and subst: "x = y \<Longrightarrow> P x \<Longrightarrow> P y"
-abbreviation not_equal :: "'a \<Rightarrow> 'a \<Rightarrow> o" (infixl "\<noteq>" 50)
+abbreviation not_equal :: "'a \<Rightarrow> 'a \<Rightarrow> o" (infixl \<open>\<noteq>\<close> 50)
where "x \<noteq> y \<equiv> \<not> (x = y)"
-abbreviation iff :: "o \<Rightarrow> o \<Rightarrow> o" (infixr "\<longleftrightarrow>" 25)
+abbreviation iff :: "o \<Rightarrow> o \<Rightarrow> o" (infixr \<open>\<longleftrightarrow>\<close> 25)
where "A \<longleftrightarrow> B \<equiv> A = B"
axiomatization
@@ -401,7 +401,7 @@
axiomatization Eps :: "('a \<Rightarrow> o) \<Rightarrow> 'a"
where someI: "P x \<Longrightarrow> P (Eps P)"
-syntax "_Eps" :: "pttrn \<Rightarrow> o \<Rightarrow> 'a" ("(3SOME _./ _)" [0, 10] 10)
+syntax "_Eps" :: "pttrn \<Rightarrow> o \<Rightarrow> 'a" (\<open>(3SOME _./ _)\<close> [0, 10] 10)
syntax_consts "_Eps" \<rightleftharpoons> Eps
translations "SOME x. P" \<rightleftharpoons> "CONST Eps (\<lambda>x. P)"