src/HOL/Analysis/Inner_Product.thy
changeset 63971 da89140186e2
parent 63886 685fb01256af
child 64267 b9a1486e79be
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/Inner_Product.thy	Fri Sep 30 15:35:37 2016 +0200
@@ -0,0 +1,402 @@
+(*  Title:      HOL/Analysis/Inner_Product.thy
+    Author:     Brian Huffman
+*)
+
+section \<open>Inner Product Spaces and the Gradient Derivative\<close>
+
+theory Inner_Product
+imports "~~/src/HOL/Complex_Main"
+begin
+
+subsection \<open>Real inner product spaces\<close>
+
+text \<open>
+  Temporarily relax type constraints for @{term "open"}, @{term "uniformity"},
+  @{term dist}, and @{term norm}.
+\<close>
+
+setup \<open>Sign.add_const_constraint
+  (@{const_name "open"}, SOME @{typ "'a::open set \<Rightarrow> bool"})\<close>
+
+setup \<open>Sign.add_const_constraint
+  (@{const_name dist}, SOME @{typ "'a::dist \<Rightarrow> 'a \<Rightarrow> real"})\<close>
+
+setup \<open>Sign.add_const_constraint
+  (@{const_name uniformity}, SOME @{typ "('a::uniformity \<times> 'a) filter"})\<close>
+
+setup \<open>Sign.add_const_constraint
+  (@{const_name norm}, SOME @{typ "'a::norm \<Rightarrow> real"})\<close>
+
+class real_inner = real_vector + sgn_div_norm + dist_norm + uniformity_dist + open_uniformity +
+  fixes inner :: "'a \<Rightarrow> 'a \<Rightarrow> real"
+  assumes inner_commute: "inner x y = inner y x"
+  and inner_add_left: "inner (x + y) z = inner x z + inner y z"
+  and inner_scaleR_left [simp]: "inner (scaleR r x) y = r * (inner x y)"
+  and inner_ge_zero [simp]: "0 \<le> inner x x"
+  and inner_eq_zero_iff [simp]: "inner x x = 0 \<longleftrightarrow> x = 0"
+  and norm_eq_sqrt_inner: "norm x = sqrt (inner x x)"
+begin
+
+lemma inner_zero_left [simp]: "inner 0 x = 0"
+  using inner_add_left [of 0 0 x] by simp
+
+lemma inner_minus_left [simp]: "inner (- x) y = - inner x y"
+  using inner_add_left [of x "- x" y] by simp
+
+lemma inner_diff_left: "inner (x - y) z = inner x z - inner y z"
+  using inner_add_left [of x "- y" z] by simp
+
+lemma inner_setsum_left: "inner (\<Sum>x\<in>A. f x) y = (\<Sum>x\<in>A. inner (f x) y)"
+  by (cases "finite A", induct set: finite, simp_all add: inner_add_left)
+
+text \<open>Transfer distributivity rules to right argument.\<close>
+
+lemma inner_add_right: "inner x (y + z) = inner x y + inner x z"
+  using inner_add_left [of y z x] by (simp only: inner_commute)
+
+lemma inner_scaleR_right [simp]: "inner x (scaleR r y) = r * (inner x y)"
+  using inner_scaleR_left [of r y x] by (simp only: inner_commute)
+
+lemma inner_zero_right [simp]: "inner x 0 = 0"
+  using inner_zero_left [of x] by (simp only: inner_commute)
+
+lemma inner_minus_right [simp]: "inner x (- y) = - inner x y"
+  using inner_minus_left [of y x] by (simp only: inner_commute)
+
+lemma inner_diff_right: "inner x (y - z) = inner x y - inner x z"
+  using inner_diff_left [of y z x] by (simp only: inner_commute)
+
+lemma inner_setsum_right: "inner x (\<Sum>y\<in>A. f y) = (\<Sum>y\<in>A. inner x (f y))"
+  using inner_setsum_left [of f A x] by (simp only: inner_commute)
+
+lemmas inner_add [algebra_simps] = inner_add_left inner_add_right
+lemmas inner_diff [algebra_simps]  = inner_diff_left inner_diff_right
+lemmas inner_scaleR = inner_scaleR_left inner_scaleR_right
+
+text \<open>Legacy theorem names\<close>
+lemmas inner_left_distrib = inner_add_left
+lemmas inner_right_distrib = inner_add_right
+lemmas inner_distrib = inner_left_distrib inner_right_distrib
+
+lemma inner_gt_zero_iff [simp]: "0 < inner x x \<longleftrightarrow> x \<noteq> 0"
+  by (simp add: order_less_le)
+
+lemma power2_norm_eq_inner: "(norm x)\<^sup>2 = inner x x"
+  by (simp add: norm_eq_sqrt_inner)
+
+text \<open>Identities involving real multiplication and division.\<close>
+
+lemma inner_mult_left: "inner (of_real m * a) b = m * (inner a b)"
+  by (metis real_inner_class.inner_scaleR_left scaleR_conv_of_real)
+
+lemma inner_mult_right: "inner a (of_real m * b) = m * (inner a b)"
+  by (metis real_inner_class.inner_scaleR_right scaleR_conv_of_real)
+
+lemma inner_mult_left': "inner (a * of_real m) b = m * (inner a b)"
+  by (simp add: of_real_def)
+
+lemma inner_mult_right': "inner a (b * of_real m) = (inner a b) * m"
+  by (simp add: of_real_def real_inner_class.inner_scaleR_right)
+
+lemma Cauchy_Schwarz_ineq:
+  "(inner x y)\<^sup>2 \<le> inner x x * inner y y"
+proof (cases)
+  assume "y = 0"
+  thus ?thesis by simp
+next
+  assume y: "y \<noteq> 0"
+  let ?r = "inner x y / inner y y"
+  have "0 \<le> inner (x - scaleR ?r y) (x - scaleR ?r y)"
+    by (rule inner_ge_zero)
+  also have "\<dots> = inner x x - inner y x * ?r"
+    by (simp add: inner_diff)
+  also have "\<dots> = inner x x - (inner x y)\<^sup>2 / inner y y"
+    by (simp add: power2_eq_square inner_commute)
+  finally have "0 \<le> inner x x - (inner x y)\<^sup>2 / inner y y" .
+  hence "(inner x y)\<^sup>2 / inner y y \<le> inner x x"
+    by (simp add: le_diff_eq)
+  thus "(inner x y)\<^sup>2 \<le> inner x x * inner y y"
+    by (simp add: pos_divide_le_eq y)
+qed
+
+lemma Cauchy_Schwarz_ineq2:
+  "\<bar>inner x y\<bar> \<le> norm x * norm y"
+proof (rule power2_le_imp_le)
+  have "(inner x y)\<^sup>2 \<le> inner x x * inner y y"
+    using Cauchy_Schwarz_ineq .
+  thus "\<bar>inner x y\<bar>\<^sup>2 \<le> (norm x * norm y)\<^sup>2"
+    by (simp add: power_mult_distrib power2_norm_eq_inner)
+  show "0 \<le> norm x * norm y"
+    unfolding norm_eq_sqrt_inner
+    by (intro mult_nonneg_nonneg real_sqrt_ge_zero inner_ge_zero)
+qed
+
+lemma norm_cauchy_schwarz: "inner x y \<le> norm x * norm y"
+  using Cauchy_Schwarz_ineq2 [of x y] by auto
+
+subclass real_normed_vector
+proof
+  fix a :: real and x y :: 'a
+  show "norm x = 0 \<longleftrightarrow> x = 0"
+    unfolding norm_eq_sqrt_inner by simp
+  show "norm (x + y) \<le> norm x + norm y"
+    proof (rule power2_le_imp_le)
+      have "inner x y \<le> norm x * norm y"
+        by (rule norm_cauchy_schwarz)
+      thus "(norm (x + y))\<^sup>2 \<le> (norm x + norm y)\<^sup>2"
+        unfolding power2_sum power2_norm_eq_inner
+        by (simp add: inner_add inner_commute)
+      show "0 \<le> norm x + norm y"
+        unfolding norm_eq_sqrt_inner by simp
+    qed
+  have "sqrt (a\<^sup>2 * inner x x) = \<bar>a\<bar> * sqrt (inner x x)"
+    by (simp add: real_sqrt_mult_distrib)
+  then show "norm (a *\<^sub>R x) = \<bar>a\<bar> * norm x"
+    unfolding norm_eq_sqrt_inner
+    by (simp add: power2_eq_square mult.assoc)
+qed
+
+end
+
+lemma inner_divide_left:
+  fixes a :: "'a :: {real_inner,real_div_algebra}"
+  shows "inner (a / of_real m) b = (inner a b) / m"
+  by (metis (no_types) divide_inverse inner_commute inner_scaleR_right mult.left_neutral mult.right_neutral mult_scaleR_right of_real_inverse scaleR_conv_of_real times_divide_eq_left)
+
+lemma inner_divide_right:
+  fixes a :: "'a :: {real_inner,real_div_algebra}"
+  shows "inner a (b / of_real m) = (inner a b) / m"
+  by (metis inner_commute inner_divide_left)
+
+text \<open>
+  Re-enable constraints for @{term "open"}, @{term "uniformity"},
+  @{term dist}, and @{term norm}.
+\<close>
+
+setup \<open>Sign.add_const_constraint
+  (@{const_name "open"}, SOME @{typ "'a::topological_space set \<Rightarrow> bool"})\<close>
+
+setup \<open>Sign.add_const_constraint
+  (@{const_name uniformity}, SOME @{typ "('a::uniform_space \<times> 'a) filter"})\<close>
+
+setup \<open>Sign.add_const_constraint
+  (@{const_name dist}, SOME @{typ "'a::metric_space \<Rightarrow> 'a \<Rightarrow> real"})\<close>
+
+setup \<open>Sign.add_const_constraint
+  (@{const_name norm}, SOME @{typ "'a::real_normed_vector \<Rightarrow> real"})\<close>
+
+lemma bounded_bilinear_inner:
+  "bounded_bilinear (inner::'a::real_inner \<Rightarrow> 'a \<Rightarrow> real)"
+proof
+  fix x y z :: 'a and r :: real
+  show "inner (x + y) z = inner x z + inner y z"
+    by (rule inner_add_left)
+  show "inner x (y + z) = inner x y + inner x z"
+    by (rule inner_add_right)
+  show "inner (scaleR r x) y = scaleR r (inner x y)"
+    unfolding real_scaleR_def by (rule inner_scaleR_left)
+  show "inner x (scaleR r y) = scaleR r (inner x y)"
+    unfolding real_scaleR_def by (rule inner_scaleR_right)
+  show "\<exists>K. \<forall>x y::'a. norm (inner x y) \<le> norm x * norm y * K"
+  proof
+    show "\<forall>x y::'a. norm (inner x y) \<le> norm x * norm y * 1"
+      by (simp add: Cauchy_Schwarz_ineq2)
+  qed
+qed
+
+lemmas tendsto_inner [tendsto_intros] =
+  bounded_bilinear.tendsto [OF bounded_bilinear_inner]
+
+lemmas isCont_inner [simp] =
+  bounded_bilinear.isCont [OF bounded_bilinear_inner]
+
+lemmas has_derivative_inner [derivative_intros] =
+  bounded_bilinear.FDERIV [OF bounded_bilinear_inner]
+
+lemmas bounded_linear_inner_left =
+  bounded_bilinear.bounded_linear_left [OF bounded_bilinear_inner]
+
+lemmas bounded_linear_inner_right =
+  bounded_bilinear.bounded_linear_right [OF bounded_bilinear_inner]
+
+lemmas bounded_linear_inner_left_comp = bounded_linear_inner_left[THEN bounded_linear_compose]
+
+lemmas bounded_linear_inner_right_comp = bounded_linear_inner_right[THEN bounded_linear_compose]
+
+lemmas has_derivative_inner_right [derivative_intros] =
+  bounded_linear.has_derivative [OF bounded_linear_inner_right]
+
+lemmas has_derivative_inner_left [derivative_intros] =
+  bounded_linear.has_derivative [OF bounded_linear_inner_left]
+
+lemma differentiable_inner [simp]:
+  "f differentiable (at x within s) \<Longrightarrow> g differentiable at x within s \<Longrightarrow> (\<lambda>x. inner (f x) (g x)) differentiable at x within s"
+  unfolding differentiable_def by (blast intro: has_derivative_inner)
+
+
+subsection \<open>Class instances\<close>
+
+instantiation real :: real_inner
+begin
+
+definition inner_real_def [simp]: "inner = op *"
+
+instance
+proof
+  fix x y z r :: real
+  show "inner x y = inner y x"
+    unfolding inner_real_def by (rule mult.commute)
+  show "inner (x + y) z = inner x z + inner y z"
+    unfolding inner_real_def by (rule distrib_right)
+  show "inner (scaleR r x) y = r * inner x y"
+    unfolding inner_real_def real_scaleR_def by (rule mult.assoc)
+  show "0 \<le> inner x x"
+    unfolding inner_real_def by simp
+  show "inner x x = 0 \<longleftrightarrow> x = 0"
+    unfolding inner_real_def by simp
+  show "norm x = sqrt (inner x x)"
+    unfolding inner_real_def by simp
+qed
+
+end
+
+lemma
+  shows real_inner_1_left[simp]: "inner 1 x = x"
+    and real_inner_1_right[simp]: "inner x 1 = x"
+  by simp_all
+
+instantiation complex :: real_inner
+begin
+
+definition inner_complex_def:
+  "inner x y = Re x * Re y + Im x * Im y"
+
+instance
+proof
+  fix x y z :: complex and r :: real
+  show "inner x y = inner y x"
+    unfolding inner_complex_def by (simp add: mult.commute)
+  show "inner (x + y) z = inner x z + inner y z"
+    unfolding inner_complex_def by (simp add: distrib_right)
+  show "inner (scaleR r x) y = r * inner x y"
+    unfolding inner_complex_def by (simp add: distrib_left)
+  show "0 \<le> inner x x"
+    unfolding inner_complex_def by simp
+  show "inner x x = 0 \<longleftrightarrow> x = 0"
+    unfolding inner_complex_def
+    by (simp add: add_nonneg_eq_0_iff complex_Re_Im_cancel_iff)
+  show "norm x = sqrt (inner x x)"
+    unfolding inner_complex_def complex_norm_def
+    by (simp add: power2_eq_square)
+qed
+
+end
+
+lemma complex_inner_1 [simp]: "inner 1 x = Re x"
+  unfolding inner_complex_def by simp
+
+lemma complex_inner_1_right [simp]: "inner x 1 = Re x"
+  unfolding inner_complex_def by simp
+
+lemma complex_inner_ii_left [simp]: "inner \<i> x = Im x"
+  unfolding inner_complex_def by simp
+
+lemma complex_inner_ii_right [simp]: "inner x \<i> = Im x"
+  unfolding inner_complex_def by simp
+
+
+subsection \<open>Gradient derivative\<close>
+
+definition
+  gderiv ::
+    "['a::real_inner \<Rightarrow> real, 'a, 'a] \<Rightarrow> bool"
+          ("(GDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
+where
+  "GDERIV f x :> D \<longleftrightarrow> FDERIV f x :> (\<lambda>h. inner h D)"
+
+lemma gderiv_deriv [simp]: "GDERIV f x :> D \<longleftrightarrow> DERIV f x :> D"
+  by (simp only: gderiv_def has_field_derivative_def inner_real_def mult_commute_abs)
+
+lemma GDERIV_DERIV_compose:
+    "\<lbrakk>GDERIV f x :> df; DERIV g (f x) :> dg\<rbrakk>
+     \<Longrightarrow> GDERIV (\<lambda>x. g (f x)) x :> scaleR dg df"
+  unfolding gderiv_def has_field_derivative_def
+  apply (drule (1) has_derivative_compose)
+  apply (simp add: ac_simps)
+  done
+
+lemma has_derivative_subst: "\<lbrakk>FDERIV f x :> df; df = d\<rbrakk> \<Longrightarrow> FDERIV f x :> d"
+  by simp
+
+lemma GDERIV_subst: "\<lbrakk>GDERIV f x :> df; df = d\<rbrakk> \<Longrightarrow> GDERIV f x :> d"
+  by simp
+
+lemma GDERIV_const: "GDERIV (\<lambda>x. k) x :> 0"
+  unfolding gderiv_def inner_zero_right by (rule has_derivative_const)
+
+lemma GDERIV_add:
+    "\<lbrakk>GDERIV f x :> df; GDERIV g x :> dg\<rbrakk>
+     \<Longrightarrow> GDERIV (\<lambda>x. f x + g x) x :> df + dg"
+  unfolding gderiv_def inner_add_right by (rule has_derivative_add)
+
+lemma GDERIV_minus:
+    "GDERIV f x :> df \<Longrightarrow> GDERIV (\<lambda>x. - f x) x :> - df"
+  unfolding gderiv_def inner_minus_right by (rule has_derivative_minus)
+
+lemma GDERIV_diff:
+    "\<lbrakk>GDERIV f x :> df; GDERIV g x :> dg\<rbrakk>
+     \<Longrightarrow> GDERIV (\<lambda>x. f x - g x) x :> df - dg"
+  unfolding gderiv_def inner_diff_right by (rule has_derivative_diff)
+
+lemma GDERIV_scaleR:
+    "\<lbrakk>DERIV f x :> df; GDERIV g x :> dg\<rbrakk>
+     \<Longrightarrow> GDERIV (\<lambda>x. scaleR (f x) (g x)) x
+      :> (scaleR (f x) dg + scaleR df (g x))"
+  unfolding gderiv_def has_field_derivative_def inner_add_right inner_scaleR_right
+  apply (rule has_derivative_subst)
+  apply (erule (1) has_derivative_scaleR)
+  apply (simp add: ac_simps)
+  done
+
+lemma GDERIV_mult:
+    "\<lbrakk>GDERIV f x :> df; GDERIV g x :> dg\<rbrakk>
+     \<Longrightarrow> GDERIV (\<lambda>x. f x * g x) x :> scaleR (f x) dg + scaleR (g x) df"
+  unfolding gderiv_def
+  apply (rule has_derivative_subst)
+  apply (erule (1) has_derivative_mult)
+  apply (simp add: inner_add ac_simps)
+  done
+
+lemma GDERIV_inverse:
+    "\<lbrakk>GDERIV f x :> df; f x \<noteq> 0\<rbrakk>
+     \<Longrightarrow> GDERIV (\<lambda>x. inverse (f x)) x :> - (inverse (f x))\<^sup>2 *\<^sub>R df"
+  apply (erule GDERIV_DERIV_compose)
+  apply (erule DERIV_inverse [folded numeral_2_eq_2])
+  done
+
+lemma GDERIV_norm:
+  assumes "x \<noteq> 0" shows "GDERIV (\<lambda>x. norm x) x :> sgn x"
+proof -
+  have 1: "FDERIV (\<lambda>x. inner x x) x :> (\<lambda>h. inner x h + inner h x)"
+    by (intro has_derivative_inner has_derivative_ident)
+  have 2: "(\<lambda>h. inner x h + inner h x) = (\<lambda>h. inner h (scaleR 2 x))"
+    by (simp add: fun_eq_iff inner_commute)
+  have "0 < inner x x" using \<open>x \<noteq> 0\<close> by simp
+  then have 3: "DERIV sqrt (inner x x) :> (inverse (sqrt (inner x x)) / 2)"
+    by (rule DERIV_real_sqrt)
+  have 4: "(inverse (sqrt (inner x x)) / 2) *\<^sub>R 2 *\<^sub>R x = sgn x"
+    by (simp add: sgn_div_norm norm_eq_sqrt_inner)
+  show ?thesis
+    unfolding norm_eq_sqrt_inner
+    apply (rule GDERIV_subst [OF _ 4])
+    apply (rule GDERIV_DERIV_compose [where g=sqrt and df="scaleR 2 x"])
+    apply (subst gderiv_def)
+    apply (rule has_derivative_subst [OF _ 2])
+    apply (rule 1)
+    apply (rule 3)
+    done
+qed
+
+lemmas has_derivative_norm = GDERIV_norm [unfolded gderiv_def]
+
+end