--- a/src/HOL/Multivariate_Analysis/Integration.thy Mon Dec 16 17:08:22 2013 +0100
+++ b/src/HOL/Multivariate_Analysis/Integration.thy Mon Dec 16 17:08:22 2013 +0100
@@ -220,8 +220,7 @@
where "One \<equiv> \<Sum>Basis"
lemma empty_as_interval: "{} = {One..(0::'a::ordered_euclidean_space)}"
- apply (auto simp: eucl_le[where 'a='a])
- by (metis (mono_tags) eucl_less eucl_less_not_refl order.strict_trans2 zero_less_one)
+ by (auto simp: eucl_le[where 'a='a])
lemma interior_subset_union_intervals:
assumes "i = {a..b::'a::ordered_euclidean_space}"
@@ -1030,14 +1029,14 @@
then show "\<exists>a b. k = {a..b}"
by auto
have "k \<subseteq> {a..b} \<and> k \<noteq> {}"
- proof (simp add: k interval_eq_empty subset_interval not_less, safe)
+ proof (simp add: k interval_eq_empty subset_interval not_less eucl_le[where 'a='a], safe)
fix i :: 'a
assume i: "i \<in> Basis"
with f have "f i = (a, c) \<or> f i = (c, d) \<or> f i = (d, b)"
by (auto simp: PiE_iff)
with i ord[of i]
show "a \<bullet> i \<le> fst (f i) \<bullet> i" "snd (f i) \<bullet> i \<le> b \<bullet> i" "fst (f i) \<bullet> i \<le> snd (f i) \<bullet> i"
- by (auto simp: subset_iff eucl_le[where 'a='a])
+ by auto
qed
then show "k \<noteq> {}" "k \<subseteq> {a .. b}"
by auto
@@ -1116,7 +1115,7 @@
using p(4)[OF goal1] by blast
have *: "{c..d} \<subseteq> {a..b}" "{c..d} \<noteq> {}"
using p(2,3)[OF goal1, unfolded k] using assms(2)
- by auto
+ by (blast intro: order.trans)+
obtain q where "q division_of {a..b}" "{c..d} \<in> q"
by (rule partial_division_extend_1[OF *])
then show ?case
@@ -2025,9 +2024,9 @@
and "\<forall>i\<in>Basis. a\<bullet>i \<le> c\<bullet>i \<and> c\<bullet>i \<le> d\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i \<and> 2 * (d\<bullet>i - c\<bullet>i) \<le> b\<bullet>i - a\<bullet>i"
proof -
have "{a..b} \<noteq> {}"
- using assms(1,3) by auto
+ using assms(1,3) by metis
then have ab: "\<And>i. i\<in>Basis \<Longrightarrow> a \<bullet> i \<le> b \<bullet> i"
- by (auto simp: interval_eq_empty not_le)
+ by (auto simp: eucl_le[where 'a='a])
{
fix f
have "finite f \<Longrightarrow>
@@ -2346,15 +2345,8 @@
qed simp
} note ABsubset = this
have "\<exists>a. \<forall>n. a\<in>{A n..B n}"
- apply (rule decreasing_closed_nest[rule_format,OF closed_interval _ ABsubset interv])
- proof -
- fix n
- show "{A n..B n} \<noteq> {}"
- apply (cases "0 < n")
- using AB(3)[of "n - 1"] assms(1,3) AB(1-2)
- apply auto
- done
- qed auto
+ by (rule decreasing_closed_nest[rule_format,OF closed_interval _ ABsubset interv])
+ (metis nat.exhaust AB(1-3) assms(1,3))
then obtain x0 where x0: "\<And>n. x0 \<in> {A n..B n}"
by blast
show thesis
@@ -3723,7 +3715,7 @@
apply (rule tagged_division_union[OF assms(1-2)])
unfolding interval_split[OF k] interior_closed_interval
using k
- apply (auto simp add: eucl_less[where 'a='a] interval elim!: ballE[where x=k])
+ apply (auto simp add: interval elim!: ballE[where x=k])
done
qed
@@ -8787,8 +8779,7 @@
proof -
case goal1
then have *: "box c d = {}"
- using interval_open_subset_closed
- by auto
+ by (metis bot.extremum_uniqueI interval_open_subset_closed)
show ?thesis
using assms(1)
unfolding *