doc-src/IsarImplementation/Thy/document/Prelim.tex
changeset 30271 dcf30c9861c3
parent 30270 61811c9224a6
parent 30269 2fab27ea2a1f
child 30272 2d612824e642
--- a/doc-src/IsarImplementation/Thy/document/Prelim.tex	Thu Mar 05 02:20:06 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,896 +0,0 @@
-%
-\begin{isabellebody}%
-\def\isabellecontext{Prelim}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isatagtheory
-\isacommand{theory}\isamarkupfalse%
-\ Prelim\isanewline
-\isakeyword{imports}\ Base\isanewline
-\isakeyword{begin}%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isamarkupchapter{Preliminaries%
-}
-\isamarkuptrue%
-%
-\isamarkupsection{Contexts \label{sec:context}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-A logical context represents the background that is required for
-  formulating statements and composing proofs.  It acts as a medium to
-  produce formal content, depending on earlier material (declarations,
-  results etc.).
-
-  For example, derivations within the Isabelle/Pure logic can be
-  described as a judgment \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}}, which means that a
-  proposition \isa{{\isasymphi}} is derivable from hypotheses \isa{{\isasymGamma}}
-  within the theory \isa{{\isasymTheta}}.  There are logical reasons for
-  keeping \isa{{\isasymTheta}} and \isa{{\isasymGamma}} separate: theories can be
-  liberal about supporting type constructors and schematic
-  polymorphism of constants and axioms, while the inner calculus of
-  \isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymphi}} is strictly limited to Simple Type Theory (with
-  fixed type variables in the assumptions).
-
-  \medskip Contexts and derivations are linked by the following key
-  principles:
-
-  \begin{itemize}
-
-  \item Transfer: monotonicity of derivations admits results to be
-  transferred into a \emph{larger} context, i.e.\ \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}} implies \isa{{\isasymGamma}{\isacharprime}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\isactrlsub {\isacharprime}\ {\isasymphi}} for contexts \isa{{\isasymTheta}{\isacharprime}\ {\isasymsupseteq}\ {\isasymTheta}} and \isa{{\isasymGamma}{\isacharprime}\ {\isasymsupseteq}\ {\isasymGamma}}.
-
-  \item Export: discharge of hypotheses admits results to be exported
-  into a \emph{smaller} context, i.e.\ \isa{{\isasymGamma}{\isacharprime}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}}
-  implies \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymDelta}\ {\isasymLongrightarrow}\ {\isasymphi}} where \isa{{\isasymGamma}{\isacharprime}\ {\isasymsupseteq}\ {\isasymGamma}} and
-  \isa{{\isasymDelta}\ {\isacharequal}\ {\isasymGamma}{\isacharprime}\ {\isacharminus}\ {\isasymGamma}}.  Note that \isa{{\isasymTheta}} remains unchanged here,
-  only the \isa{{\isasymGamma}} part is affected.
-
-  \end{itemize}
-
-  \medskip By modeling the main characteristics of the primitive
-  \isa{{\isasymTheta}} and \isa{{\isasymGamma}} above, and abstracting over any
-  particular logical content, we arrive at the fundamental notions of
-  \emph{theory context} and \emph{proof context} in Isabelle/Isar.
-  These implement a certain policy to manage arbitrary \emph{context
-  data}.  There is a strongly-typed mechanism to declare new kinds of
-  data at compile time.
-
-  The internal bootstrap process of Isabelle/Pure eventually reaches a
-  stage where certain data slots provide the logical content of \isa{{\isasymTheta}} and \isa{{\isasymGamma}} sketched above, but this does not stop there!
-  Various additional data slots support all kinds of mechanisms that
-  are not necessarily part of the core logic.
-
-  For example, there would be data for canonical introduction and
-  elimination rules for arbitrary operators (depending on the
-  object-logic and application), which enables users to perform
-  standard proof steps implicitly (cf.\ the \isa{rule} method
-  \cite{isabelle-isar-ref}).
-
-  \medskip Thus Isabelle/Isar is able to bring forth more and more
-  concepts successively.  In particular, an object-logic like
-  Isabelle/HOL continues the Isabelle/Pure setup by adding specific
-  components for automated reasoning (classical reasoner, tableau
-  prover, structured induction etc.) and derived specification
-  mechanisms (inductive predicates, recursive functions etc.).  All of
-  this is ultimately based on the generic data management by theory
-  and proof contexts introduced here.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Theory context \label{sec:context-theory}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-A \emph{theory} is a data container with explicit name and unique
-  identifier.  Theories are related by a (nominal) sub-theory
-  relation, which corresponds to the dependency graph of the original
-  construction; each theory is derived from a certain sub-graph of
-  ancestor theories.
-
-  The \isa{merge} operation produces the least upper bound of two
-  theories, which actually degenerates into absorption of one theory
-  into the other (due to the nominal sub-theory relation).
-
-  The \isa{begin} operation starts a new theory by importing
-  several parent theories and entering a special \isa{draft} mode,
-  which is sustained until the final \isa{end} operation.  A draft
-  theory acts like a linear type, where updates invalidate earlier
-  versions.  An invalidated draft is called ``stale''.
-
-  The \isa{checkpoint} operation produces an intermediate stepping
-  stone that will survive the next update: both the original and the
-  changed theory remain valid and are related by the sub-theory
-  relation.  Checkpointing essentially recovers purely functional
-  theory values, at the expense of some extra internal bookkeeping.
-
-  The \isa{copy} operation produces an auxiliary version that has
-  the same data content, but is unrelated to the original: updates of
-  the copy do not affect the original, neither does the sub-theory
-  relation hold.
-
-  \medskip The example in \figref{fig:ex-theory} below shows a theory
-  graph derived from \isa{Pure}, with theory \isa{Length}
-  importing \isa{Nat} and \isa{List}.  The body of \isa{Length} consists of a sequence of updates, working mostly on
-  drafts.  Intermediate checkpoints may occur as well, due to the
-  history mechanism provided by the Isar top-level, cf.\
-  \secref{sec:isar-toplevel}.
-
-  \begin{figure}[htb]
-  \begin{center}
-  \begin{tabular}{rcccl}
-        &            & \isa{Pure} \\
-        &            & \isa{{\isasymdown}} \\
-        &            & \isa{FOL} \\
-        & $\swarrow$ &              & $\searrow$ & \\
-  \isa{Nat} &    &              &            & \isa{List} \\
-        & $\searrow$ &              & $\swarrow$ \\
-        &            & \isa{Length} \\
-        &            & \multicolumn{3}{l}{~~\hyperlink{keyword.imports}{\mbox{\isa{\isakeyword{imports}}}}} \\
-        &            & \multicolumn{3}{l}{~~\hyperlink{keyword.begin}{\mbox{\isa{\isakeyword{begin}}}}} \\
-        &            & $\vdots$~~ \\
-        &            & \isa{{\isasymbullet}}~~ \\
-        &            & $\vdots$~~ \\
-        &            & \isa{{\isasymbullet}}~~ \\
-        &            & $\vdots$~~ \\
-        &            & \multicolumn{3}{l}{~~\hyperlink{command.end}{\mbox{\isa{\isacommand{end}}}}} \\
-  \end{tabular}
-  \caption{A theory definition depending on ancestors}\label{fig:ex-theory}
-  \end{center}
-  \end{figure}
-
-  \medskip There is a separate notion of \emph{theory reference} for
-  maintaining a live link to an evolving theory context: updates on
-  drafts are propagated automatically.  Dynamic updating stops after
-  an explicit \isa{end} only.
-
-  Derived entities may store a theory reference in order to indicate
-  the context they belong to.  This implicitly assumes monotonic
-  reasoning, because the referenced context may become larger without
-  further notice.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isatagmlref
-%
-\begin{isamarkuptext}%
-\begin{mldecls}
-  \indexdef{}{ML type}{theory}\verb|type theory| \\
-  \indexdef{}{ML}{Theory.subthy}\verb|Theory.subthy: theory * theory -> bool| \\
-  \indexdef{}{ML}{Theory.merge}\verb|Theory.merge: theory * theory -> theory| \\
-  \indexdef{}{ML}{Theory.checkpoint}\verb|Theory.checkpoint: theory -> theory| \\
-  \indexdef{}{ML}{Theory.copy}\verb|Theory.copy: theory -> theory| \\
-  \end{mldecls}
-  \begin{mldecls}
-  \indexdef{}{ML type}{theory\_ref}\verb|type theory_ref| \\
-  \indexdef{}{ML}{Theory.deref}\verb|Theory.deref: theory_ref -> theory| \\
-  \indexdef{}{ML}{Theory.check\_thy}\verb|Theory.check_thy: theory -> theory_ref| \\
-  \end{mldecls}
-
-  \begin{description}
-
-  \item \verb|theory| represents theory contexts.  This is
-  essentially a linear type!  Most operations destroy the original
-  version, which then becomes ``stale''.
-
-  \item \verb|Theory.subthy|~\isa{{\isacharparenleft}thy\isactrlsub {\isadigit{1}}{\isacharcomma}\ thy\isactrlsub {\isadigit{2}}{\isacharparenright}}
-  compares theories according to the inherent graph structure of the
-  construction.  This sub-theory relation is a nominal approximation
-  of inclusion (\isa{{\isasymsubseteq}}) of the corresponding content.
-
-  \item \verb|Theory.merge|~\isa{{\isacharparenleft}thy\isactrlsub {\isadigit{1}}{\isacharcomma}\ thy\isactrlsub {\isadigit{2}}{\isacharparenright}}
-  absorbs one theory into the other.  This fails for unrelated
-  theories!
-
-  \item \verb|Theory.checkpoint|~\isa{thy} produces a safe
-  stepping stone in the linear development of \isa{thy}.  The next
-  update will result in two related, valid theories.
-
-  \item \verb|Theory.copy|~\isa{thy} produces a variant of \isa{thy} that holds a copy of the same data.  The result is not
-  related to the original; the original is unchanged.
-
-  \item \verb|theory_ref| represents a sliding reference to an
-  always valid theory; updates on the original are propagated
-  automatically.
-
-  \item \verb|Theory.deref|~\isa{thy{\isacharunderscore}ref} turns a \verb|theory_ref| into an \verb|theory| value.  As the referenced
-  theory evolves monotonically over time, later invocations of \verb|Theory.deref| may refer to a larger context.
-
-  \item \verb|Theory.check_thy|~\isa{thy} produces a \verb|theory_ref| from a valid \verb|theory| value.
-
-  \end{description}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagmlref
-{\isafoldmlref}%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isamarkupsubsection{Proof context \label{sec:context-proof}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-A proof context is a container for pure data with a back-reference
-  to the theory it belongs to.  The \isa{init} operation creates a
-  proof context from a given theory.  Modifications to draft theories
-  are propagated to the proof context as usual, but there is also an
-  explicit \isa{transfer} operation to force resynchronization
-  with more substantial updates to the underlying theory.  The actual
-  context data does not require any special bookkeeping, thanks to the
-  lack of destructive features.
-
-  Entities derived in a proof context need to record inherent logical
-  requirements explicitly, since there is no separate context
-  identification as for theories.  For example, hypotheses used in
-  primitive derivations (cf.\ \secref{sec:thms}) are recorded
-  separately within the sequent \isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymphi}}, just to make double
-  sure.  Results could still leak into an alien proof context due to
-  programming errors, but Isabelle/Isar includes some extra validity
-  checks in critical positions, notably at the end of a sub-proof.
-
-  Proof contexts may be manipulated arbitrarily, although the common
-  discipline is to follow block structure as a mental model: a given
-  context is extended consecutively, and results are exported back
-  into the original context.  Note that the Isar proof states model
-  block-structured reasoning explicitly, using a stack of proof
-  contexts internally.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isatagmlref
-%
-\begin{isamarkuptext}%
-\begin{mldecls}
-  \indexdef{}{ML type}{Proof.context}\verb|type Proof.context| \\
-  \indexdef{}{ML}{ProofContext.init}\verb|ProofContext.init: theory -> Proof.context| \\
-  \indexdef{}{ML}{ProofContext.theory\_of}\verb|ProofContext.theory_of: Proof.context -> theory| \\
-  \indexdef{}{ML}{ProofContext.transfer}\verb|ProofContext.transfer: theory -> Proof.context -> Proof.context| \\
-  \end{mldecls}
-
-  \begin{description}
-
-  \item \verb|Proof.context| represents proof contexts.  Elements
-  of this type are essentially pure values, with a sliding reference
-  to the background theory.
-
-  \item \verb|ProofContext.init|~\isa{thy} produces a proof context
-  derived from \isa{thy}, initializing all data.
-
-  \item \verb|ProofContext.theory_of|~\isa{ctxt} selects the
-  background theory from \isa{ctxt}, dereferencing its internal
-  \verb|theory_ref|.
-
-  \item \verb|ProofContext.transfer|~\isa{thy\ ctxt} promotes the
-  background theory of \isa{ctxt} to the super theory \isa{thy}.
-
-  \end{description}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagmlref
-{\isafoldmlref}%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isamarkupsubsection{Generic contexts \label{sec:generic-context}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-A generic context is the disjoint sum of either a theory or proof
-  context.  Occasionally, this enables uniform treatment of generic
-  context data, typically extra-logical information.  Operations on
-  generic contexts include the usual injections, partial selections,
-  and combinators for lifting operations on either component of the
-  disjoint sum.
-
-  Moreover, there are total operations \isa{theory{\isacharunderscore}of} and \isa{proof{\isacharunderscore}of} to convert a generic context into either kind: a theory
-  can always be selected from the sum, while a proof context might
-  have to be constructed by an ad-hoc \isa{init} operation.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isatagmlref
-%
-\begin{isamarkuptext}%
-\begin{mldecls}
-  \indexdef{}{ML type}{Context.generic}\verb|type Context.generic| \\
-  \indexdef{}{ML}{Context.theory\_of}\verb|Context.theory_of: Context.generic -> theory| \\
-  \indexdef{}{ML}{Context.proof\_of}\verb|Context.proof_of: Context.generic -> Proof.context| \\
-  \end{mldecls}
-
-  \begin{description}
-
-  \item \verb|Context.generic| is the direct sum of \verb|theory| and \verb|Proof.context|, with the datatype
-  constructors \verb|Context.Theory| and \verb|Context.Proof|.
-
-  \item \verb|Context.theory_of|~\isa{context} always produces a
-  theory from the generic \isa{context}, using \verb|ProofContext.theory_of| as required.
-
-  \item \verb|Context.proof_of|~\isa{context} always produces a
-  proof context from the generic \isa{context}, using \verb|ProofContext.init| as required (note that this re-initializes the
-  context data with each invocation).
-
-  \end{description}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagmlref
-{\isafoldmlref}%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isamarkupsubsection{Context data \label{sec:context-data}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-The main purpose of theory and proof contexts is to manage arbitrary
-  data.  New data types can be declared incrementally at compile time.
-  There are separate declaration mechanisms for any of the three kinds
-  of contexts: theory, proof, generic.
-
-  \paragraph{Theory data} may refer to destructive entities, which are
-  maintained in direct correspondence to the linear evolution of
-  theory values, including explicit copies.\footnote{Most existing
-  instances of destructive theory data are merely historical relics
-  (e.g.\ the destructive theorem storage, and destructive hints for
-  the Simplifier and Classical rules).}  A theory data declaration
-  needs to implement the following SML signature:
-
-  \medskip
-  \begin{tabular}{ll}
-  \isa{{\isasymtype}\ T} & representing type \\
-  \isa{{\isasymval}\ empty{\isacharcolon}\ T} & empty default value \\
-  \isa{{\isasymval}\ copy{\isacharcolon}\ T\ {\isasymrightarrow}\ T} & refresh impure data \\
-  \isa{{\isasymval}\ extend{\isacharcolon}\ T\ {\isasymrightarrow}\ T} & re-initialize on import \\
-  \isa{{\isasymval}\ merge{\isacharcolon}\ T\ {\isasymtimes}\ T\ {\isasymrightarrow}\ T} & join on import \\
-  \end{tabular}
-  \medskip
-
-  \noindent The \isa{empty} value acts as initial default for
-  \emph{any} theory that does not declare actual data content; \isa{copy} maintains persistent integrity for impure data, it is just
-  the identity for pure values; \isa{extend} is acts like a
-  unitary version of \isa{merge}, both operations should also
-  include the functionality of \isa{copy} for impure data.
-
-  \paragraph{Proof context data} is purely functional.  A declaration
-  needs to implement the following SML signature:
-
-  \medskip
-  \begin{tabular}{ll}
-  \isa{{\isasymtype}\ T} & representing type \\
-  \isa{{\isasymval}\ init{\isacharcolon}\ theory\ {\isasymrightarrow}\ T} & produce initial value \\
-  \end{tabular}
-  \medskip
-
-  \noindent The \isa{init} operation is supposed to produce a pure
-  value from the given background theory.
-
-  \paragraph{Generic data} provides a hybrid interface for both theory
-  and proof data.  The declaration is essentially the same as for
-  (pure) theory data, without \isa{copy}.  The \isa{init}
-  operation for proof contexts merely selects the current data value
-  from the background theory.
-
-  \bigskip A data declaration of type \isa{T} results in the
-  following interface:
-
-  \medskip
-  \begin{tabular}{ll}
-  \isa{init{\isacharcolon}\ theory\ {\isasymrightarrow}\ T} \\
-  \isa{get{\isacharcolon}\ context\ {\isasymrightarrow}\ T} \\
-  \isa{put{\isacharcolon}\ T\ {\isasymrightarrow}\ context\ {\isasymrightarrow}\ context} \\
-  \isa{map{\isacharcolon}\ {\isacharparenleft}T\ {\isasymrightarrow}\ T{\isacharparenright}\ {\isasymrightarrow}\ context\ {\isasymrightarrow}\ context} \\
-  \end{tabular}
-  \medskip
-
-  \noindent Here \isa{init} is only applicable to impure theory
-  data to install a fresh copy persistently (destructive update on
-  uninitialized has no permanent effect).  The other operations provide
-  access for the particular kind of context (theory, proof, or generic
-  context).  Note that this is a safe interface: there is no other way
-  to access the corresponding data slot of a context.  By keeping
-  these operations private, a component may maintain abstract values
-  authentically, without other components interfering.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isatagmlref
-%
-\begin{isamarkuptext}%
-\begin{mldecls}
-  \indexdef{}{ML functor}{TheoryDataFun}\verb|functor TheoryDataFun| \\
-  \indexdef{}{ML functor}{ProofDataFun}\verb|functor ProofDataFun| \\
-  \indexdef{}{ML functor}{GenericDataFun}\verb|functor GenericDataFun| \\
-  \end{mldecls}
-
-  \begin{description}
-
-  \item \verb|TheoryDataFun|\isa{{\isacharparenleft}spec{\isacharparenright}} declares data for
-  type \verb|theory| according to the specification provided as
-  argument structure.  The resulting structure provides data init and
-  access operations as described above.
-
-  \item \verb|ProofDataFun|\isa{{\isacharparenleft}spec{\isacharparenright}} is analogous to
-  \verb|TheoryDataFun| for type \verb|Proof.context|.
-
-  \item \verb|GenericDataFun|\isa{{\isacharparenleft}spec{\isacharparenright}} is analogous to
-  \verb|TheoryDataFun| for type \verb|Context.generic|.
-
-  \end{description}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagmlref
-{\isafoldmlref}%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isamarkupsection{Names \label{sec:names}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-In principle, a name is just a string, but there are various
-  convention for encoding additional structure.  For example, ``\isa{Foo{\isachardot}bar{\isachardot}baz}'' is considered as a qualified name consisting of
-  three basic name components.  The individual constituents of a name
-  may have further substructure, e.g.\ the string
-  ``\verb,\,\verb,<alpha>,'' encodes as a single symbol.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Strings of symbols%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-A \emph{symbol} constitutes the smallest textual unit in Isabelle
-  --- raw characters are normally not encountered at all.  Isabelle
-  strings consist of a sequence of symbols, represented as a packed
-  string or a list of strings.  Each symbol is in itself a small
-  string, which has either one of the following forms:
-
-  \begin{enumerate}
-
-  \item a single ASCII character ``\isa{c}'', for example
-  ``\verb,a,'',
-
-  \item a regular symbol ``\verb,\,\verb,<,\isa{ident}\verb,>,'',
-  for example ``\verb,\,\verb,<alpha>,'',
-
-  \item a control symbol ``\verb,\,\verb,<^,\isa{ident}\verb,>,'',
-  for example ``\verb,\,\verb,<^bold>,'',
-
-  \item a raw symbol ``\verb,\,\verb,<^raw:,\isa{text}\verb,>,''
-  where \isa{text} constists of printable characters excluding
-  ``\verb,.,'' and ``\verb,>,'', for example
-  ``\verb,\,\verb,<^raw:$\sum_{i = 1}^n$>,'',
-
-  \item a numbered raw control symbol ``\verb,\,\verb,<^raw,\isa{n}\verb,>, where \isa{n} consists of digits, for example
-  ``\verb,\,\verb,<^raw42>,''.
-
-  \end{enumerate}
-
-  \noindent The \isa{ident} syntax for symbol names is \isa{letter\ {\isacharparenleft}letter\ {\isacharbar}\ digit{\isacharparenright}\isactrlsup {\isacharasterisk}}, where \isa{letter\ {\isacharequal}\ A{\isachardot}{\isachardot}Za{\isachardot}{\isachardot}z} and \isa{digit\ {\isacharequal}\ {\isadigit{0}}{\isachardot}{\isachardot}{\isadigit{9}}}.  There are infinitely many
-  regular symbols and control symbols, but a fixed collection of
-  standard symbols is treated specifically.  For example,
-  ``\verb,\,\verb,<alpha>,'' is classified as a letter, which means it
-  may occur within regular Isabelle identifiers.
-
-  Since the character set underlying Isabelle symbols is 7-bit ASCII
-  and 8-bit characters are passed through transparently, Isabelle may
-  also process Unicode/UCS data in UTF-8 encoding.  Unicode provides
-  its own collection of mathematical symbols, but there is no built-in
-  link to the standard collection of Isabelle.
-
-  \medskip Output of Isabelle symbols depends on the print mode
-  (\secref{print-mode}).  For example, the standard {\LaTeX} setup of
-  the Isabelle document preparation system would present
-  ``\verb,\,\verb,<alpha>,'' as \isa{{\isasymalpha}}, and
-  ``\verb,\,\verb,<^bold>,\verb,\,\verb,<alpha>,'' as \isa{\isactrlbold {\isasymalpha}}.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isatagmlref
-%
-\begin{isamarkuptext}%
-\begin{mldecls}
-  \indexdef{}{ML type}{Symbol.symbol}\verb|type Symbol.symbol| \\
-  \indexdef{}{ML}{Symbol.explode}\verb|Symbol.explode: string -> Symbol.symbol list| \\
-  \indexdef{}{ML}{Symbol.is\_letter}\verb|Symbol.is_letter: Symbol.symbol -> bool| \\
-  \indexdef{}{ML}{Symbol.is\_digit}\verb|Symbol.is_digit: Symbol.symbol -> bool| \\
-  \indexdef{}{ML}{Symbol.is\_quasi}\verb|Symbol.is_quasi: Symbol.symbol -> bool| \\
-  \indexdef{}{ML}{Symbol.is\_blank}\verb|Symbol.is_blank: Symbol.symbol -> bool| \\
-  \end{mldecls}
-  \begin{mldecls}
-  \indexdef{}{ML type}{Symbol.sym}\verb|type Symbol.sym| \\
-  \indexdef{}{ML}{Symbol.decode}\verb|Symbol.decode: Symbol.symbol -> Symbol.sym| \\
-  \end{mldecls}
-
-  \begin{description}
-
-  \item \verb|Symbol.symbol| represents individual Isabelle
-  symbols; this is an alias for \verb|string|.
-
-  \item \verb|Symbol.explode|~\isa{str} produces a symbol list
-  from the packed form.  This function supercedes \verb|String.explode| for virtually all purposes of manipulating text in
-  Isabelle!
-
-  \item \verb|Symbol.is_letter|, \verb|Symbol.is_digit|, \verb|Symbol.is_quasi|, \verb|Symbol.is_blank| classify standard
-  symbols according to fixed syntactic conventions of Isabelle, cf.\
-  \cite{isabelle-isar-ref}.
-
-  \item \verb|Symbol.sym| is a concrete datatype that represents
-  the different kinds of symbols explicitly, with constructors \verb|Symbol.Char|, \verb|Symbol.Sym|, \verb|Symbol.Ctrl|, \verb|Symbol.Raw|.
-
-  \item \verb|Symbol.decode| converts the string representation of a
-  symbol into the datatype version.
-
-  \end{description}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagmlref
-{\isafoldmlref}%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isamarkupsubsection{Basic names \label{sec:basic-names}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-A \emph{basic name} essentially consists of a single Isabelle
-  identifier.  There are conventions to mark separate classes of basic
-  names, by attaching a suffix of underscores: one underscore means
-  \emph{internal name}, two underscores means \emph{Skolem name},
-  three underscores means \emph{internal Skolem name}.
-
-  For example, the basic name \isa{foo} has the internal version
-  \isa{foo{\isacharunderscore}}, with Skolem versions \isa{foo{\isacharunderscore}{\isacharunderscore}} and \isa{foo{\isacharunderscore}{\isacharunderscore}{\isacharunderscore}}, respectively.
-
-  These special versions provide copies of the basic name space, apart
-  from anything that normally appears in the user text.  For example,
-  system generated variables in Isar proof contexts are usually marked
-  as internal, which prevents mysterious name references like \isa{xaa} to appear in the text.
-
-  \medskip Manipulating binding scopes often requires on-the-fly
-  renamings.  A \emph{name context} contains a collection of already
-  used names.  The \isa{declare} operation adds names to the
-  context.
-
-  The \isa{invents} operation derives a number of fresh names from
-  a given starting point.  For example, the first three names derived
-  from \isa{a} are \isa{a}, \isa{b}, \isa{c}.
-
-  The \isa{variants} operation produces fresh names by
-  incrementing tentative names as base-26 numbers (with digits \isa{a{\isachardot}{\isachardot}z}) until all clashes are resolved.  For example, name \isa{foo} results in variants \isa{fooa}, \isa{foob}, \isa{fooc}, \dots, \isa{fooaa}, \isa{fooab} etc.; each renaming
-  step picks the next unused variant from this sequence.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isatagmlref
-%
-\begin{isamarkuptext}%
-\begin{mldecls}
-  \indexdef{}{ML}{Name.internal}\verb|Name.internal: string -> string| \\
-  \indexdef{}{ML}{Name.skolem}\verb|Name.skolem: string -> string| \\
-  \end{mldecls}
-  \begin{mldecls}
-  \indexdef{}{ML type}{Name.context}\verb|type Name.context| \\
-  \indexdef{}{ML}{Name.context}\verb|Name.context: Name.context| \\
-  \indexdef{}{ML}{Name.declare}\verb|Name.declare: string -> Name.context -> Name.context| \\
-  \indexdef{}{ML}{Name.invents}\verb|Name.invents: Name.context -> string -> int -> string list| \\
-  \indexdef{}{ML}{Name.variants}\verb|Name.variants: string list -> Name.context -> string list * Name.context| \\
-  \end{mldecls}
-
-  \begin{description}
-
-  \item \verb|Name.internal|~\isa{name} produces an internal name
-  by adding one underscore.
-
-  \item \verb|Name.skolem|~\isa{name} produces a Skolem name by
-  adding two underscores.
-
-  \item \verb|Name.context| represents the context of already used
-  names; the initial value is \verb|Name.context|.
-
-  \item \verb|Name.declare|~\isa{name} enters a used name into the
-  context.
-
-  \item \verb|Name.invents|~\isa{context\ name\ n} produces \isa{n} fresh names derived from \isa{name}.
-
-  \item \verb|Name.variants|~\isa{names\ context} produces fresh
-  variants of \isa{names}; the result is entered into the context.
-
-  \end{description}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagmlref
-{\isafoldmlref}%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isamarkupsubsection{Indexed names%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-An \emph{indexed name} (or \isa{indexname}) is a pair of a basic
-  name and a natural number.  This representation allows efficient
-  renaming by incrementing the second component only.  The canonical
-  way to rename two collections of indexnames apart from each other is
-  this: determine the maximum index \isa{maxidx} of the first
-  collection, then increment all indexes of the second collection by
-  \isa{maxidx\ {\isacharplus}\ {\isadigit{1}}}; the maximum index of an empty collection is
-  \isa{{\isacharminus}{\isadigit{1}}}.
-
-  Occasionally, basic names and indexed names are injected into the
-  same pair type: the (improper) indexname \isa{{\isacharparenleft}x{\isacharcomma}\ {\isacharminus}{\isadigit{1}}{\isacharparenright}} is used
-  to encode basic names.
-
-  \medskip Isabelle syntax observes the following rules for
-  representing an indexname \isa{{\isacharparenleft}x{\isacharcomma}\ i{\isacharparenright}} as a packed string:
-
-  \begin{itemize}
-
-  \item \isa{{\isacharquery}x} if \isa{x} does not end with a digit and \isa{i\ {\isacharequal}\ {\isadigit{0}}},
-
-  \item \isa{{\isacharquery}xi} if \isa{x} does not end with a digit,
-
-  \item \isa{{\isacharquery}x{\isachardot}i} otherwise.
-
-  \end{itemize}
-
-  Indexnames may acquire large index numbers over time.  Results are
-  normalized towards \isa{{\isadigit{0}}} at certain checkpoints, notably at
-  the end of a proof.  This works by producing variants of the
-  corresponding basic name components.  For example, the collection
-  \isa{{\isacharquery}x{\isadigit{1}}{\isacharcomma}\ {\isacharquery}x{\isadigit{7}}{\isacharcomma}\ {\isacharquery}x{\isadigit{4}}{\isadigit{2}}} becomes \isa{{\isacharquery}x{\isacharcomma}\ {\isacharquery}xa{\isacharcomma}\ {\isacharquery}xb}.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isatagmlref
-%
-\begin{isamarkuptext}%
-\begin{mldecls}
-  \indexdef{}{ML type}{indexname}\verb|type indexname| \\
-  \end{mldecls}
-
-  \begin{description}
-
-  \item \verb|indexname| represents indexed names.  This is an
-  abbreviation for \verb|string * int|.  The second component is
-  usually non-negative, except for situations where \isa{{\isacharparenleft}x{\isacharcomma}\ {\isacharminus}{\isadigit{1}}{\isacharparenright}}
-  is used to embed basic names into this type.
-
-  \end{description}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagmlref
-{\isafoldmlref}%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isamarkupsubsection{Qualified names and name spaces%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-A \emph{qualified name} consists of a non-empty sequence of basic
-  name components.  The packed representation uses a dot as separator,
-  as in ``\isa{A{\isachardot}b{\isachardot}c}''.  The last component is called \emph{base}
-  name, the remaining prefix \emph{qualifier} (which may be empty).
-  The idea of qualified names is to encode nested structures by
-  recording the access paths as qualifiers.  For example, an item
-  named ``\isa{A{\isachardot}b{\isachardot}c}'' may be understood as a local entity \isa{c}, within a local structure \isa{b}, within a global
-  structure \isa{A}.  Typically, name space hierarchies consist of
-  1--2 levels of qualification, but this need not be always so.
-
-  The empty name is commonly used as an indication of unnamed
-  entities, whenever this makes any sense.  The basic operations on
-  qualified names are smart enough to pass through such improper names
-  unchanged.
-
-  \medskip A \isa{naming} policy tells how to turn a name
-  specification into a fully qualified internal name (by the \isa{full} operation), and how fully qualified names may be accessed
-  externally.  For example, the default naming policy is to prefix an
-  implicit path: \isa{full\ x} produces \isa{path{\isachardot}x}, and the
-  standard accesses for \isa{path{\isachardot}x} include both \isa{x} and
-  \isa{path{\isachardot}x}.  Normally, the naming is implicit in the theory or
-  proof context; there are separate versions of the corresponding.
-
-  \medskip A \isa{name\ space} manages a collection of fully
-  internalized names, together with a mapping between external names
-  and internal names (in both directions).  The corresponding \isa{intern} and \isa{extern} operations are mostly used for
-  parsing and printing only!  The \isa{declare} operation augments
-  a name space according to the accesses determined by the naming
-  policy.
-
-  \medskip As a general principle, there is a separate name space for
-  each kind of formal entity, e.g.\ logical constant, type
-  constructor, type class, theorem.  It is usually clear from the
-  occurrence in concrete syntax (or from the scope) which kind of
-  entity a name refers to.  For example, the very same name \isa{c} may be used uniformly for a constant, type constructor, and
-  type class.
-
-  There are common schemes to name theorems systematically, according
-  to the name of the main logical entity involved, e.g.\ \isa{c{\isachardot}intro} for a canonical theorem related to constant \isa{c}.
-  This technique of mapping names from one space into another requires
-  some care in order to avoid conflicts.  In particular, theorem names
-  derived from a type constructor or type class are better suffixed in
-  addition to the usual qualification, e.g.\ \isa{c{\isacharunderscore}type{\isachardot}intro}
-  and \isa{c{\isacharunderscore}class{\isachardot}intro} for theorems related to type \isa{c}
-  and class \isa{c}, respectively.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isatagmlref
-%
-\begin{isamarkuptext}%
-\begin{mldecls}
-  \indexdef{}{ML}{NameSpace.base}\verb|NameSpace.base: string -> string| \\
-  \indexdef{}{ML}{NameSpace.qualifier}\verb|NameSpace.qualifier: string -> string| \\
-  \indexdef{}{ML}{NameSpace.append}\verb|NameSpace.append: string -> string -> string| \\
-  \indexdef{}{ML}{NameSpace.implode}\verb|NameSpace.implode: string list -> string| \\
-  \indexdef{}{ML}{NameSpace.explode}\verb|NameSpace.explode: string -> string list| \\
-  \end{mldecls}
-  \begin{mldecls}
-  \indexdef{}{ML type}{NameSpace.naming}\verb|type NameSpace.naming| \\
-  \indexdef{}{ML}{NameSpace.default\_naming}\verb|NameSpace.default_naming: NameSpace.naming| \\
-  \indexdef{}{ML}{NameSpace.add\_path}\verb|NameSpace.add_path: string -> NameSpace.naming -> NameSpace.naming| \\
-  \indexdef{}{ML}{NameSpace.full\_name}\verb|NameSpace.full_name: NameSpace.naming -> binding -> string| \\
-  \end{mldecls}
-  \begin{mldecls}
-  \indexdef{}{ML type}{NameSpace.T}\verb|type NameSpace.T| \\
-  \indexdef{}{ML}{NameSpace.empty}\verb|NameSpace.empty: NameSpace.T| \\
-  \indexdef{}{ML}{NameSpace.merge}\verb|NameSpace.merge: NameSpace.T * NameSpace.T -> NameSpace.T| \\
-  \indexdef{}{ML}{NameSpace.declare}\verb|NameSpace.declare: NameSpace.naming -> binding -> NameSpace.T -> string * NameSpace.T| \\
-  \indexdef{}{ML}{NameSpace.intern}\verb|NameSpace.intern: NameSpace.T -> string -> string| \\
-  \indexdef{}{ML}{NameSpace.extern}\verb|NameSpace.extern: NameSpace.T -> string -> string| \\
-  \end{mldecls}
-
-  \begin{description}
-
-  \item \verb|NameSpace.base|~\isa{name} returns the base name of a
-  qualified name.
-
-  \item \verb|NameSpace.qualifier|~\isa{name} returns the qualifier
-  of a qualified name.
-
-  \item \verb|NameSpace.append|~\isa{name\isactrlisub {\isadigit{1}}\ name\isactrlisub {\isadigit{2}}}
-  appends two qualified names.
-
-  \item \verb|NameSpace.implode|~\isa{name} and \verb|NameSpace.explode|~\isa{names} convert between the packed string
-  representation and the explicit list form of qualified names.
-
-  \item \verb|NameSpace.naming| represents the abstract concept of
-  a naming policy.
-
-  \item \verb|NameSpace.default_naming| is the default naming policy.
-  In a theory context, this is usually augmented by a path prefix
-  consisting of the theory name.
-
-  \item \verb|NameSpace.add_path|~\isa{path\ naming} augments the
-  naming policy by extending its path component.
-
-  \item \verb|NameSpace.full_name|\isa{naming\ binding} turns a name
-  binding (usually a basic name) into the fully qualified
-  internal name, according to the given naming policy.
-
-  \item \verb|NameSpace.T| represents name spaces.
-
-  \item \verb|NameSpace.empty| and \verb|NameSpace.merge|~\isa{{\isacharparenleft}space\isactrlisub {\isadigit{1}}{\isacharcomma}\ space\isactrlisub {\isadigit{2}}{\isacharparenright}} are the canonical operations for
-  maintaining name spaces according to theory data management
-  (\secref{sec:context-data}).
-
-  \item \verb|NameSpace.declare|~\isa{naming\ bindings\ space} enters a
-  name binding as fully qualified internal name into the name space,
-  with external accesses determined by the naming policy.
-
-  \item \verb|NameSpace.intern|~\isa{space\ name} internalizes a
-  (partially qualified) external name.
-
-  This operation is mostly for parsing!  Note that fully qualified
-  names stemming from declarations are produced via \verb|NameSpace.full_name| and \verb|NameSpace.declare|
-  (or their derivatives for \verb|theory| and
-  \verb|Proof.context|).
-
-  \item \verb|NameSpace.extern|~\isa{space\ name} externalizes a
-  (fully qualified) internal name.
-
-  This operation is mostly for printing!  Note unqualified names are
-  produced via \verb|NameSpace.base|.
-
-  \end{description}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagmlref
-{\isafoldmlref}%
-%
-\isadelimmlref
-%
-\endisadelimmlref
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isatagtheory
-\isacommand{end}\isamarkupfalse%
-%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-\isanewline
-\end{isabellebody}%
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "root"
-%%% End: