--- a/src/HOL/Analysis/Starlike.thy Wed Oct 09 23:00:52 2019 +0200
+++ b/src/HOL/Analysis/Starlike.thy Wed Oct 09 14:51:54 2019 +0000
@@ -1221,7 +1221,7 @@
show "x - min (e/2 / norm (x - a)) 1 *\<^sub>R (x - a) \<in> interior S"
apply (clarsimp simp add: min_def a)
apply (rule mem_interior_closure_convex_shrink [OF \<open>convex S\<close> a x])
- using \<open>0 < e\<close> False apply (auto simp: divide_simps)
+ using \<open>0 < e\<close> False apply (auto simp: field_split_simps)
done
qed
qed
@@ -3433,7 +3433,7 @@
qed
qed
then show False
- using \<open>0 < e\<close> \<open>l \<noteq> 0\<close> by (simp add: d_def [symmetric] divide_simps)
+ using \<open>0 < e\<close> \<open>l \<noteq> 0\<close> by (simp add: d_def [symmetric] field_simps)
qed
moreover have "a + d *\<^sub>R l \<in> closure S"
proof (clarsimp simp: closure_approachable)
@@ -3444,7 +3444,7 @@
have "norm l * min d (\<eta> / (norm l * 2)) \<le> norm l * (\<eta> / (norm l * 2))"
by (metis min_def mult_left_mono norm_ge_zero order_refl)
also have "... < \<eta>"
- using \<open>l \<noteq> 0\<close> \<open>0 < \<eta>\<close> by (simp add: divide_simps)
+ using \<open>l \<noteq> 0\<close> \<open>0 < \<eta>\<close> by (simp add: field_simps)
finally have 2: "norm l * min d (\<eta> / (norm l * 2)) < \<eta>" .
show "\<exists>y\<in>S. dist y (a + d *\<^sub>R l) < \<eta>"
apply (rule_tac x="a + (d - min d (\<eta> / 2 / norm l)) *\<^sub>R l" in bexI)
@@ -3498,7 +3498,7 @@
using xy
apply (auto simp: in_segment)
apply (rule_tac x="d" in exI)
- using \<open>0 < d\<close> that apply (auto simp: divide_simps algebra_simps)
+ using \<open>0 < d\<close> that apply (auto simp: algebra_simps)
done
ultimately have "1 \<le> d"
using df rel_frontier_def by fastforce
@@ -3507,7 +3507,7 @@
ultimately show "y \<in> closed_segment x (x + d *\<^sub>R (y - x))"
apply (auto simp: in_segment)
apply (rule_tac x="1/d" in exI)
- apply (auto simp: divide_simps algebra_simps)
+ apply (auto simp: algebra_simps)
done
next
show "open_segment x (x + d *\<^sub>R (y - x)) \<subseteq> rel_interior S"
@@ -5972,7 +5972,7 @@
ultimately have ass: "a /\<^sub>R (norm a) \<in> span S \<inter> sphere 0 1"
by simp
have aa: "a /\<^sub>R (norm a) \<in> (\<Inter>c\<in>C. {x. 0 \<le> c \<bullet> x})"
- apply (clarsimp simp add: divide_simps)
+ apply (clarsimp simp add: field_split_simps)
using ab \<open>0 < b\<close>
by (metis hull_inc inner_commute less_eq_real_def less_trans)
show ?thesis
@@ -7446,7 +7446,7 @@
by (intro closure_minimal UN_mono ball_subset_cball order_refl cl)
also have "... \<subseteq> (\<Union>x \<in> -S. \<Union>y\<in>ball 0 (1 / (1 + real n)). {x + y})"
apply (intro UN_mono order_refl)
- apply (simp add: cball_subset_ball_iff divide_simps)
+ apply (simp add: cball_subset_ball_iff field_split_simps)
done
finally show "closure (\<Union>x\<in>- S. \<Union>y\<in>ball 0 (1 / (2 + real n)). {x + y})
\<subseteq> (\<Union>x \<in> -S. \<Union>y\<in>ball 0 (1 / (1 + real n)). {x + y})" .
@@ -7463,7 +7463,7 @@
obtain N2 where N2: "norm(x - a) \<le> real N2"
by (meson real_arch_simple)
have N12: "inverse((N1 + N2) + 1) \<le> inverse(N1)"
- using \<open>N1 > 0\<close> by (auto simp: divide_simps)
+ using \<open>N1 > 0\<close> by (auto simp: field_split_simps)
have "x \<noteq> y + z" if "y \<notin> S" "norm z < 1 / (1 + (real N1 + real N2))" for y z
proof -
have "e * real N1 < e * (1 + (real N1 + real N2))"