src/HOL/MetisExamples/Abstraction.thy
changeset 23449 dd874e6a3282
child 23519 a4ffa756d8eb
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/MetisExamples/Abstraction.thy	Thu Jun 21 13:23:33 2007 +0200
@@ -0,0 +1,248 @@
+(*  Title:      HOL/MetisExamples/Abstraction.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+
+Testing the metis method
+*)
+
+theory Abstraction imports FuncSet
+begin
+
+(*For Christoph Benzmueller*)
+lemma "x<1 & ((op=) = (op=)) ==> ((op=) = (op=)) & (x<(2::nat))";
+  by (metis One_nat_def less_Suc0 not_less0 not_less_eq numeral_2_eq_2)
+
+(*this is a theorem, but we can't prove it unless ext is applied explicitly
+lemma "(op=) = (%x y. y=x)"
+*)
+
+consts
+  monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool"
+  pset  :: "'a set => 'a set"
+  order :: "'a set => ('a * 'a) set"
+
+ML{*ResAtp.problem_name := "Abstraction__Collect_triv"*}
+lemma (*Collect_triv:*) "a \<in> {x. P x} ==> P a"
+proof (neg_clausify)
+assume 0: "(a\<Colon>'a\<Colon>type) \<in> Collect (P\<Colon>'a\<Colon>type \<Rightarrow> bool)"
+assume 1: "\<not> (P\<Colon>'a\<Colon>type \<Rightarrow> bool) (a\<Colon>'a\<Colon>type)"
+have 2: "(P\<Colon>'a\<Colon>type \<Rightarrow> bool) (a\<Colon>'a\<Colon>type)"
+  by (metis CollectD 0)
+show "False"
+  by (metis 2 1)
+qed
+
+lemma Collect_triv: "a \<in> {x. P x} ==> P a"
+by (metis member_Collect_eq member_def)
+
+
+ML{*ResAtp.problem_name := "Abstraction__Collect_mp"*}
+lemma "a \<in> {x. P x --> Q x} ==> a \<in> {x. P x} ==> a \<in> {x. Q x}"
+  by (metis CollectI Collect_imp_eq ComplD UnE memberI member_Collect_eq);
+  --{*34 secs*}
+
+ML{*ResAtp.problem_name := "Abstraction__Sigma_triv"*}
+lemma "(a,b) \<in> Sigma A B ==> a \<in> A & b \<in> B a"
+proof (neg_clausify)
+assume 0: "(a\<Colon>'a\<Colon>type, b\<Colon>'b\<Colon>type) \<in> Sigma (A\<Colon>'a\<Colon>type set) (B\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>type set)"
+assume 1: "(a\<Colon>'a\<Colon>type) \<notin> (A\<Colon>'a\<Colon>type set) \<or> (b\<Colon>'b\<Colon>type) \<notin> (B\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>type set) a"
+have 2: "(a\<Colon>'a\<Colon>type) \<in> (A\<Colon>'a\<Colon>type set)"
+  by (metis SigmaD1 0)
+have 3: "(b\<Colon>'b\<Colon>type) \<in> (B\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>type set) (a\<Colon>'a\<Colon>type)"
+  by (metis SigmaD2 0)
+have 4: "(b\<Colon>'b\<Colon>type) \<notin> (B\<Colon>'a\<Colon>type \<Rightarrow> 'b\<Colon>type set) (a\<Colon>'a\<Colon>type)"
+  by (metis 1 2)
+show "False"
+  by (metis 3 4)
+qed
+
+lemma Sigma_triv: "(a,b) \<in> Sigma A B ==> a \<in> A & b \<in> B a"
+by (metis SigmaD1 SigmaD2)
+
+ML{*ResAtp.problem_name := "Abstraction__Sigma_Collect"*}
+lemma "(a,b) \<in> (SIGMA x: A. {y. x = f y}) ==> a \<in> A & a = f b"
+(*???metis cannot prove this
+by (metis CollectD SigmaD1 SigmaD2 UN_eq)
+Also, UN_eq is unnecessary*)
+by (meson CollectD SigmaD1 SigmaD2)
+
+
+
+(*single-step*)
+lemma "(a,b) \<in> (SIGMA x: A. {y. x = f y}) ==> a \<in> A & a = f b"
+proof (neg_clausify)
+assume 0: "(a, b) \<in> Sigma A (llabs_subgoal_1 f)"
+assume 1: "\<And>f x. llabs_subgoal_1 f x = Collect (COMBB (op = x) f)"
+assume 2: "a \<notin> A \<or> a \<noteq> f b"
+have 3: "a \<in> A"
+  by (metis SigmaD1 0)
+have 4: "b \<in> llabs_subgoal_1 f a"
+  by (metis SigmaD2 0)
+have 5: "\<And>X1 X2. X2 -` {X1} = llabs_subgoal_1 X2 X1"
+  by (metis 1 vimage_Collect_eq singleton_conv2)
+have 6: "\<And>X1 X2 X3. X1 X2 = X3 \<or> X2 \<notin> llabs_subgoal_1 X1 X3"
+  by (metis vimage_singleton_eq 5)
+have 7: "f b \<noteq> a"
+  by (metis 2 3)
+have 8: "f b = a"
+  by (metis 6 4)
+show "False"
+  by (metis 8 7)
+qed finish_clausify
+
+
+ML{*ResAtp.problem_name := "Abstraction__CLF_eq_in_pp"*}
+lemma "(cl,f) \<in> CLF ==> CLF = (SIGMA cl: CL.{f. f \<in> pset cl}) ==> f \<in> pset cl"
+apply (metis Collect_mem_eq SigmaD2);
+done
+
+lemma "(cl,f) \<in> CLF ==> CLF = (SIGMA cl: CL.{f. f \<in> pset cl}) ==> f \<in> pset cl"proof (neg_clausify)
+assume 0: "(cl, f) \<in> CLF"
+assume 1: "CLF = Sigma CL llabs_subgoal_1"
+assume 2: "\<And>cl. llabs_subgoal_1 cl =
+     Collect (llabs_Predicate_XRangeP_def_2_ op \<in> (pset cl))"
+assume 3: "f \<notin> pset cl"
+show "False"
+  by (metis 0 1 SigmaD2 3 2 Collect_mem_eq)
+qed finish_clausify (*ugly hack: combinators??*)
+
+ML{*ResAtp.problem_name := "Abstraction__Sigma_Collect_Pi"*}
+lemma
+    "(cl,f) \<in> (SIGMA cl: CL. {f. f \<in> pset cl \<rightarrow> pset cl}) ==> 
+    f \<in> pset cl \<rightarrow> pset cl"
+apply (metis Collect_mem_eq SigmaD2);
+done
+
+lemma
+    "(cl,f) \<in> (SIGMA cl::'a set : CL. {f. f \<in> pset cl \<rightarrow> pset cl}) ==> 
+    f \<in> pset cl \<rightarrow> pset cl" 
+proof (neg_clausify)
+assume 0: "(cl, f) \<in> Sigma CL llabs_subgoal_1"
+assume 1: "\<And>cl. llabs_subgoal_1 cl =
+     Collect
+      (llabs_Predicate_XRangeP_def_2_ op \<in> (Pi (pset cl) (COMBK (pset cl))))"
+assume 2: "f \<notin> Pi (pset cl) (COMBK (pset cl))"
+show "False"
+  by (metis Collect_mem_eq 1 2 SigmaD2 0 member2_def)
+qed finish_clausify
+    (*Hack to prevent the "Additional hypotheses" error*)
+
+ML{*ResAtp.problem_name := "Abstraction__Sigma_Collect_Int"*}
+lemma
+    "(cl,f) \<in> (SIGMA cl: CL. {f. f \<in> pset cl \<inter> cl}) ==>
+   f \<in> pset cl \<inter> cl"
+by (metis Collect_mem_eq SigmaD2)
+
+ML{*ResAtp.problem_name := "Abstraction__Sigma_Collect_Pi_mono"*}
+lemma
+    "(cl,f) \<in> (SIGMA cl: CL. {f. f \<in> pset cl \<rightarrow> pset cl & monotone f (pset cl) (order cl)}) ==>
+   (f \<in> pset cl \<rightarrow> pset cl)  &  (monotone f (pset cl) (order cl))"
+by auto
+
+ML{*ResAtp.problem_name := "Abstraction__CLF_subset_Collect_Int"*}
+lemma "(cl,f) \<in> CLF ==> 
+   CLF \<subseteq> (SIGMA cl: CL. {f. f \<in> pset cl \<inter> cl}) ==>
+   f \<in> pset cl \<inter> cl"
+by (metis Collect_mem_eq Int_def SigmaD2 UnCI Un_absorb1)
+  --{*@{text Int_def} is redundant}
+
+ML{*ResAtp.problem_name := "Abstraction__CLF_eq_Collect_Int"*}
+lemma "(cl,f) \<in> CLF ==> 
+   CLF = (SIGMA cl: CL. {f. f \<in> pset cl \<inter> cl}) ==>
+   f \<in> pset cl \<inter> cl"
+by (metis Collect_mem_eq Int_commute SigmaD2)
+
+ML{*ResAtp.problem_name := "Abstraction__CLF_subset_Collect_Pi"*}
+lemma 
+   "(cl,f) \<in> CLF ==> 
+    CLF \<subseteq> (SIGMA cl': CL. {f. f \<in> pset cl' \<rightarrow> pset cl'}) ==> 
+    f \<in> pset cl \<rightarrow> pset cl"
+by (metis Collect_mem_eq SigmaD2 subsetD)
+
+ML{*ResAtp.problem_name := "Abstraction__CLF_eq_Collect_Pi"*}
+lemma 
+  "(cl,f) \<in> CLF ==> 
+   CLF = (SIGMA cl: CL. {f. f \<in> pset cl \<rightarrow> pset cl}) ==> 
+   f \<in> pset cl \<rightarrow> pset cl"
+by (metis Collect_mem_eq SigmaD2 contra_subsetD equalityE)
+
+ML{*ResAtp.problem_name := "Abstraction__CLF_eq_Collect_Pi_mono"*}
+lemma 
+  "(cl,f) \<in> CLF ==> 
+   CLF = (SIGMA cl: CL. {f. f \<in> pset cl \<rightarrow> pset cl & monotone f (pset cl) (order cl)}) ==>
+   (f \<in> pset cl \<rightarrow> pset cl)  &  (monotone f (pset cl) (order cl))"
+by auto
+
+ML{*ResAtp.problem_name := "Abstraction__map_eq_zipA"*}
+lemma "map (%x. (f x, g x)) xs = zip (map f xs) (map g xs)"
+apply (induct xs)
+(*sledgehammer*)  
+apply auto
+done
+
+ML{*ResAtp.problem_name := "Abstraction__map_eq_zipB"*}
+lemma "map (%w. (w -> w, w \<times> w)) xs = 
+       zip (map (%w. w -> w) xs) (map (%w. w \<times> w) xs)"
+apply (induct xs)
+(*sledgehammer*)  
+apply auto
+done
+
+ML{*ResAtp.problem_name := "Abstraction__image_evenA"*}
+lemma "(%x. Suc(f x)) ` {x. even x} <= A ==> (\<forall>x. even x --> Suc(f x) \<in> A)";
+(*sledgehammer*)  
+by auto
+
+ML{*ResAtp.problem_name := "Abstraction__image_evenB"*}
+lemma "(%x. f (f x)) ` ((%x. Suc(f x)) ` {x. even x}) <= A 
+       ==> (\<forall>x. even x --> f (f (Suc(f x))) \<in> A)";
+(*sledgehammer*)  
+by auto
+
+ML{*ResAtp.problem_name := "Abstraction__image_curry"*}
+lemma "f \<in> (%u v. b \<times> u \<times> v) ` A ==> \<forall>u v. P (b \<times> u \<times> v) ==> P(f y)" 
+(*sledgehammer*)  
+by auto
+
+ML{*ResAtp.problem_name := "Abstraction__image_TimesA"*}
+lemma image_TimesA: "(%(x,y). (f x, g y)) ` (A \<times> B) = (f`A) \<times> (g`B)"
+(*sledgehammer*) 
+apply (rule equalityI)
+(***Even the two inclusions are far too difficult
+ML{*ResAtp.problem_name := "Abstraction__image_TimesA_simpler"*}
+***)
+apply (rule subsetI)
+apply (erule imageE)
+(*V manages from here with help: Abstraction__image_TimesA_simpler_1_b.p*)
+apply (erule ssubst)
+apply (erule SigmaE)
+(*V manages from here: Abstraction__image_TimesA_simpler_1_a.p*)
+apply (erule ssubst)
+apply (subst split_conv)
+apply (rule SigmaI) 
+apply (erule imageI) +
+txt{*subgoal 2*}
+apply (clarify );
+apply (simp add: );  
+apply (rule rev_image_eqI)  
+apply (blast intro: elim:); 
+apply (simp add: );
+done
+
+(*Given the difficulty of the previous problem, these two are probably
+impossible*)
+
+ML{*ResAtp.problem_name := "Abstraction__image_TimesB"*}
+lemma image_TimesB:
+    "(%(x,y,z). (f x, g y, h z)) ` (A \<times> B \<times> C) = (f`A) \<times> (g`B) \<times> (h`C)" 
+(*sledgehammer*) 
+by force
+
+ML{*ResAtp.problem_name := "Abstraction__image_TimesC"*}
+lemma image_TimesC:
+    "(%(x,y). (x \<rightarrow> x, y \<times> y)) ` (A \<times> B) = 
+     ((%x. x \<rightarrow> x) ` A) \<times> ((%y. y \<times> y) ` B)" 
+(*sledgehammer*) 
+by auto
+
+end