src/Pure/raw_simplifier.ML
changeset 41228 e1fce873b814
parent 41227 11e7ee2ca77f
child 41469 287554587af5
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Pure/raw_simplifier.ML	Fri Dec 17 17:08:56 2010 +0100
@@ -0,0 +1,1379 @@
+(*  Title:      Pure/raw_simplifier.ML
+    Author:     Tobias Nipkow and Stefan Berghofer, TU Muenchen
+
+Higher-order Simplification.
+*)
+
+infix 4
+  addsimps delsimps addeqcongs deleqcongs addcongs delcongs addsimprocs delsimprocs
+  setmksimps setmkcong setmksym setmkeqTrue settermless setsubgoaler
+  setloop' setloop addloop addloop' delloop setSSolver addSSolver setSolver addSolver;
+
+signature BASIC_RAW_SIMPLIFIER =
+sig
+  val simp_depth_limit: int Config.T
+  val simp_trace_depth_limit: int Config.T
+  val simp_debug: bool Config.T
+  val simp_trace: bool Config.T
+  type rrule
+  val eq_rrule: rrule * rrule -> bool
+  type simpset
+  type proc
+  type solver
+  val mk_solver': string -> (simpset -> int -> tactic) -> solver
+  val mk_solver: string -> (thm list -> int -> tactic) -> solver
+  val empty_ss: simpset
+  val merge_ss: simpset * simpset -> simpset
+  val dest_ss: simpset ->
+   {simps: (string * thm) list,
+    procs: (string * cterm list) list,
+    congs: (string * thm) list,
+    weak_congs: string list,
+    loopers: string list,
+    unsafe_solvers: string list,
+    safe_solvers: string list}
+  type simproc
+  val eq_simproc: simproc * simproc -> bool
+  val morph_simproc: morphism -> simproc -> simproc
+  val make_simproc: {name: string, lhss: cterm list,
+    proc: morphism -> simpset -> cterm -> thm option, identifier: thm list} -> simproc
+  val mk_simproc: string -> cterm list -> (theory -> simpset -> term -> thm option) -> simproc
+  val prems_of_ss: simpset -> thm list
+  val addsimps: simpset * thm list -> simpset
+  val delsimps: simpset * thm list -> simpset
+  val addeqcongs: simpset * thm list -> simpset
+  val deleqcongs: simpset * thm list -> simpset
+  val addcongs: simpset * thm list -> simpset
+  val delcongs: simpset * thm list -> simpset
+  val addsimprocs: simpset * simproc list -> simpset
+  val delsimprocs: simpset * simproc list -> simpset
+  val mksimps: simpset -> thm -> thm list
+  val setmksimps: simpset * (simpset -> thm -> thm list) -> simpset
+  val setmkcong: simpset * (simpset -> thm -> thm) -> simpset
+  val setmksym: simpset * (simpset -> thm -> thm option) -> simpset
+  val setmkeqTrue: simpset * (simpset -> thm -> thm option) -> simpset
+  val settermless: simpset * (term * term -> bool) -> simpset
+  val setsubgoaler: simpset * (simpset -> int -> tactic) -> simpset
+  val setloop': simpset * (simpset -> int -> tactic) -> simpset
+  val setloop: simpset * (int -> tactic) -> simpset
+  val addloop': simpset * (string * (simpset -> int -> tactic)) -> simpset
+  val addloop: simpset * (string * (int -> tactic)) -> simpset
+  val delloop: simpset * string -> simpset
+  val setSSolver: simpset * solver -> simpset
+  val addSSolver: simpset * solver -> simpset
+  val setSolver: simpset * solver -> simpset
+  val addSolver: simpset * solver -> simpset
+
+  val rewrite_rule: thm list -> thm -> thm
+  val rewrite_goals_rule: thm list -> thm -> thm
+  val rewrite_goals_tac: thm list -> tactic
+  val rewrite_goal_tac: thm list -> int -> tactic
+  val rewtac: thm -> tactic
+  val prune_params_tac: tactic
+  val fold_rule: thm list -> thm -> thm
+  val fold_goals_tac: thm list -> tactic
+  val norm_hhf: thm -> thm
+  val norm_hhf_protect: thm -> thm
+end;
+
+signature RAW_SIMPLIFIER =
+sig
+  include BASIC_RAW_SIMPLIFIER
+  exception SIMPLIFIER of string * thm
+  val internal_ss: simpset ->
+   {rules: rrule Net.net,
+    prems: thm list,
+    bounds: int * ((string * typ) * string) list,
+    depth: int * bool Unsynchronized.ref,
+    context: Proof.context option} *
+   {congs: (string * thm) list * string list,
+    procs: proc Net.net,
+    mk_rews:
+     {mk: simpset -> thm -> thm list,
+      mk_cong: simpset -> thm -> thm,
+      mk_sym: simpset -> thm -> thm option,
+      mk_eq_True: simpset -> thm -> thm option,
+      reorient: theory -> term list -> term -> term -> bool},
+    termless: term * term -> bool,
+    subgoal_tac: simpset -> int -> tactic,
+    loop_tacs: (string * (simpset -> int -> tactic)) list,
+    solvers: solver list * solver list}
+  val add_simp: thm -> simpset -> simpset
+  val del_simp: thm -> simpset -> simpset
+  val solver: simpset -> solver -> int -> tactic
+  val simp_depth_limit_raw: Config.raw
+  val clear_ss: simpset -> simpset
+  val simproc_global_i: theory -> string -> term list
+    -> (theory -> simpset -> term -> thm option) -> simproc
+  val simproc_global: theory -> string -> string list
+    -> (theory -> simpset -> term -> thm option) -> simproc
+  val simp_trace_depth_limit_raw: Config.raw
+  val simp_trace_depth_limit_default: int Unsynchronized.ref
+  val simp_trace_default: bool Unsynchronized.ref
+  val simp_trace_raw: Config.raw
+  val simp_debug_raw: Config.raw
+  val add_prems: thm list -> simpset -> simpset
+  val inherit_context: simpset -> simpset -> simpset
+  val the_context: simpset -> Proof.context
+  val context: Proof.context -> simpset -> simpset
+  val global_context: theory  -> simpset -> simpset
+  val with_context: Proof.context -> (simpset -> simpset) -> simpset -> simpset
+  val debug_bounds: bool Unsynchronized.ref
+  val set_reorient: (theory -> term list -> term -> term -> bool) -> simpset -> simpset
+  val set_solvers: solver list -> simpset -> simpset
+  val rewrite_cterm: bool * bool * bool -> (simpset -> thm -> thm option) -> simpset -> conv
+  val rewrite_term: theory -> thm list -> (term -> term option) list -> term -> term
+  val rewrite_thm: bool * bool * bool ->
+    (simpset -> thm -> thm option) -> simpset -> thm -> thm
+  val rewrite_goal_rule: bool * bool * bool ->
+    (simpset -> thm -> thm option) -> simpset -> int -> thm -> thm
+  val asm_rewrite_goal_tac: bool * bool * bool ->
+    (simpset -> tactic) -> simpset -> int -> tactic
+  val rewrite: bool -> thm list -> conv
+  val simplify: bool -> thm list -> thm -> thm
+end;
+
+structure Raw_Simplifier: RAW_SIMPLIFIER =
+struct
+
+(** datatype simpset **)
+
+(* rewrite rules *)
+
+type rrule =
+ {thm: thm,         (*the rewrite rule*)
+  name: string,     (*name of theorem from which rewrite rule was extracted*)
+  lhs: term,        (*the left-hand side*)
+  elhs: cterm,      (*the etac-contracted lhs*)
+  extra: bool,      (*extra variables outside of elhs*)
+  fo: bool,         (*use first-order matching*)
+  perm: bool};      (*the rewrite rule is permutative*)
+
+(*
+Remarks:
+  - elhs is used for matching,
+    lhs only for preservation of bound variable names;
+  - fo is set iff
+    either elhs is first-order (no Var is applied),
+      in which case fo-matching is complete,
+    or elhs is not a pattern,
+      in which case there is nothing better to do;
+*)
+
+fun eq_rrule ({thm = thm1, ...}: rrule, {thm = thm2, ...}: rrule) =
+  Thm.eq_thm_prop (thm1, thm2);
+
+
+(* simplification sets, procedures, and solvers *)
+
+(*A simpset contains data required during conversion:
+    rules: discrimination net of rewrite rules;
+    prems: current premises;
+    bounds: maximal index of bound variables already used
+      (for generating new names when rewriting under lambda abstractions);
+    depth: simp_depth and exceeded flag;
+    congs: association list of congruence rules and
+           a list of `weak' congruence constants.
+           A congruence is `weak' if it avoids normalization of some argument.
+    procs: discrimination net of simplification procedures
+      (functions that prove rewrite rules on the fly);
+    mk_rews:
+      mk: turn simplification thms into rewrite rules;
+      mk_cong: prepare congruence rules;
+      mk_sym: turn == around;
+      mk_eq_True: turn P into P == True;
+    termless: relation for ordered rewriting;*)
+
+datatype simpset =
+  Simpset of
+   {rules: rrule Net.net,
+    prems: thm list,
+    bounds: int * ((string * typ) * string) list,
+    depth: int * bool Unsynchronized.ref,
+    context: Proof.context option} *
+   {congs: (string * thm) list * string list,
+    procs: proc Net.net,
+    mk_rews:
+     {mk: simpset -> thm -> thm list,
+      mk_cong: simpset -> thm -> thm,
+      mk_sym: simpset -> thm -> thm option,
+      mk_eq_True: simpset -> thm -> thm option,
+      reorient: theory -> term list -> term -> term -> bool},
+    termless: term * term -> bool,
+    subgoal_tac: simpset -> int -> tactic,
+    loop_tacs: (string * (simpset -> int -> tactic)) list,
+    solvers: solver list * solver list}
+and proc =
+  Proc of
+   {name: string,
+    lhs: cterm,
+    proc: simpset -> cterm -> thm option,
+    id: stamp * thm list}
+and solver =
+  Solver of
+   {name: string,
+    solver: simpset -> int -> tactic,
+    id: stamp};
+
+
+fun internal_ss (Simpset args) = args;
+
+fun make_ss1 (rules, prems, bounds, depth, context) =
+  {rules = rules, prems = prems, bounds = bounds, depth = depth, context = context};
+
+fun map_ss1 f {rules, prems, bounds, depth, context} =
+  make_ss1 (f (rules, prems, bounds, depth, context));
+
+fun make_ss2 (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =
+  {congs = congs, procs = procs, mk_rews = mk_rews, termless = termless,
+    subgoal_tac = subgoal_tac, loop_tacs = loop_tacs, solvers = solvers};
+
+fun map_ss2 f {congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers} =
+  make_ss2 (f (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
+
+fun make_simpset (args1, args2) = Simpset (make_ss1 args1, make_ss2 args2);
+
+fun map_simpset1 f (Simpset (r1, r2)) = Simpset (map_ss1 f r1, r2);
+fun map_simpset2 f (Simpset (r1, r2)) = Simpset (r1, map_ss2 f r2);
+
+fun prems_of_ss (Simpset ({prems, ...}, _)) = prems;
+
+fun eq_procid ((s1: stamp, ths1: thm list), (s2, ths2)) =
+  s1 = s2 andalso eq_list Thm.eq_thm (ths1, ths2);
+fun eq_proc (Proc {id = id1, ...}, Proc {id = id2, ...}) = eq_procid (id1, id2);
+
+fun mk_solver' name solver = Solver {name = name, solver = solver, id = stamp ()};
+fun mk_solver name solver = mk_solver' name (solver o prems_of_ss);
+
+fun solver_name (Solver {name, ...}) = name;
+fun solver ss (Solver {solver = tac, ...}) = tac ss;
+fun eq_solver (Solver {id = id1, ...}, Solver {id = id2, ...}) = (id1 = id2);
+
+
+(* simp depth *)
+
+val simp_depth_limit_raw = Config.declare "simp_depth_limit" (K (Config.Int 100));
+val simp_depth_limit = Config.int simp_depth_limit_raw;
+
+val simp_trace_depth_limit_default = Unsynchronized.ref 1;
+val simp_trace_depth_limit_raw = Config.declare "simp_trace_depth_limit"
+  (fn _ => Config.Int (! simp_trace_depth_limit_default));
+val simp_trace_depth_limit = Config.int simp_trace_depth_limit_raw;
+
+fun simp_trace_depth_limit_of NONE = ! simp_trace_depth_limit_default
+  | simp_trace_depth_limit_of (SOME ctxt) = Config.get ctxt simp_trace_depth_limit;
+
+fun trace_depth (Simpset ({depth = (depth, exceeded), context, ...}, _)) msg =
+  if depth > simp_trace_depth_limit_of context then
+    if ! exceeded then () else (tracing "simp_trace_depth_limit exceeded!"; exceeded := true)
+  else
+    (tracing (enclose "[" "]" (string_of_int depth) ^ msg); exceeded := false);
+
+val inc_simp_depth = map_simpset1 (fn (rules, prems, bounds, (depth, exceeded), context) =>
+  (rules, prems, bounds,
+    (depth + 1,
+      if depth = simp_trace_depth_limit_of context then Unsynchronized.ref false else exceeded), context));
+
+fun simp_depth (Simpset ({depth = (depth, _), ...}, _)) = depth;
+
+
+(* diagnostics *)
+
+exception SIMPLIFIER of string * thm;
+
+val simp_debug_raw = Config.declare "simp_debug" (K (Config.Bool false));
+val simp_debug = Config.bool simp_debug_raw;
+
+val simp_trace_default = Unsynchronized.ref false;
+val simp_trace_raw = Config.declare "simp_trace" (fn _ => Config.Bool (! simp_trace_default));
+val simp_trace = Config.bool simp_trace_raw;
+
+fun if_enabled (Simpset ({context, ...}, _)) flag f =
+  (case context of
+    SOME ctxt => if Config.get ctxt flag then f ctxt else ()
+  | NONE => ())
+
+fun if_visible (Simpset ({context, ...}, _)) f x =
+  (case context of
+    SOME ctxt => if Context_Position.is_visible ctxt then f x else ()
+  | NONE => ());
+
+local
+
+fun prnt ss warn a = if warn then warning a else trace_depth ss a;
+
+fun show_bounds (Simpset ({bounds = (_, bs), ...}, _)) t =
+  let
+    val names = Term.declare_term_names t Name.context;
+    val xs = rev (#1 (Name.variants (rev (map #2 bs)) names));
+    fun subst (((b, T), _), x') = (Free (b, T), Syntax.mark_boundT (x', T));
+  in Term.subst_atomic (ListPair.map subst (bs, xs)) t end;
+
+fun print_term ss warn a t ctxt = prnt ss warn (a () ^ "\n" ^
+  Syntax.string_of_term ctxt
+    (if Config.get ctxt simp_debug then t else show_bounds ss t));
+
+in
+
+fun print_term_global ss warn a thy t =
+  print_term ss warn (K a) t (ProofContext.init_global thy);
+
+fun debug warn a ss = if_enabled ss simp_debug (fn _ => prnt ss warn (a ()));
+fun trace warn a ss = if_enabled ss simp_trace (fn _ => prnt ss warn (a ()));
+
+fun debug_term warn a ss t = if_enabled ss simp_debug (print_term ss warn a t);
+fun trace_term warn a ss t = if_enabled ss simp_trace (print_term ss warn a t);
+
+fun trace_cterm warn a ss ct =
+  if_enabled ss simp_trace (print_term ss warn a (Thm.term_of ct));
+
+fun trace_thm a ss th =
+  if_enabled ss simp_trace (print_term ss false a (Thm.full_prop_of th));
+
+fun trace_named_thm a ss (th, name) =
+  if_enabled ss simp_trace (print_term ss false
+    (fn () => if name = "" then a () else a () ^ " " ^ quote name ^ ":")
+    (Thm.full_prop_of th));
+
+fun warn_thm a ss th =
+  print_term_global ss true a (Thm.theory_of_thm th) (Thm.full_prop_of th);
+
+fun cond_warn_thm a ss th = if_visible ss (fn () => warn_thm a ss th) ();
+
+end;
+
+
+
+(** simpset operations **)
+
+(* context *)
+
+fun eq_bound (x: string, (y, _)) = x = y;
+
+fun add_bound bound = map_simpset1 (fn (rules, prems, (count, bounds), depth, context) =>
+  (rules, prems, (count + 1, bound :: bounds), depth, context));
+
+fun add_prems ths = map_simpset1 (fn (rules, prems, bounds, depth, context) =>
+  (rules, ths @ prems, bounds, depth, context));
+
+fun inherit_context (Simpset ({bounds, depth, context, ...}, _)) =
+  map_simpset1 (fn (rules, prems, _, _, _) => (rules, prems, bounds, depth, context));
+
+fun the_context (Simpset ({context = SOME ctxt, ...}, _)) = ctxt
+  | the_context _ = raise Fail "Simplifier: no proof context in simpset";
+
+fun context ctxt =
+  map_simpset1 (fn (rules, prems, bounds, depth, _) => (rules, prems, bounds, depth, SOME ctxt));
+
+val global_context = context o ProofContext.init_global;
+
+fun activate_context thy ss =
+  let
+    val ctxt = the_context ss;
+    val ctxt' = ctxt
+      |> Context.raw_transfer (Theory.merge (thy, ProofContext.theory_of ctxt))
+      |> Context_Position.set_visible false;
+  in context ctxt' ss end;
+
+fun with_context ctxt f ss = inherit_context ss (f (context ctxt ss));
+
+
+(* maintain simp rules *)
+
+(* FIXME: it seems that the conditions on extra variables are too liberal if
+prems are nonempty: does solving the prems really guarantee instantiation of
+all its Vars? Better: a dynamic check each time a rule is applied.
+*)
+fun rewrite_rule_extra_vars prems elhs erhs =
+  let
+    val elhss = elhs :: prems;
+    val tvars = fold Term.add_tvars elhss [];
+    val vars = fold Term.add_vars elhss [];
+  in
+    erhs |> Term.exists_type (Term.exists_subtype
+      (fn TVar v => not (member (op =) tvars v) | _ => false)) orelse
+    erhs |> Term.exists_subterm
+      (fn Var v => not (member (op =) vars v) | _ => false)
+  end;
+
+fun rrule_extra_vars elhs thm =
+  rewrite_rule_extra_vars [] (term_of elhs) (Thm.full_prop_of thm);
+
+fun mk_rrule2 {thm, name, lhs, elhs, perm} =
+  let
+    val t = term_of elhs;
+    val fo = Pattern.first_order t orelse not (Pattern.pattern t);
+    val extra = rrule_extra_vars elhs thm;
+  in {thm = thm, name = name, lhs = lhs, elhs = elhs, extra = extra, fo = fo, perm = perm} end;
+
+fun del_rrule (rrule as {thm, elhs, ...}) ss =
+  ss |> map_simpset1 (fn (rules, prems, bounds, depth, context) =>
+    (Net.delete_term eq_rrule (term_of elhs, rrule) rules, prems, bounds, depth, context))
+  handle Net.DELETE => (cond_warn_thm "Rewrite rule not in simpset:" ss thm; ss);
+
+fun insert_rrule (rrule as {thm, name, ...}) ss =
+ (trace_named_thm (fn () => "Adding rewrite rule") ss (thm, name);
+  ss |> map_simpset1 (fn (rules, prems, bounds, depth, context) =>
+    let
+      val rrule2 as {elhs, ...} = mk_rrule2 rrule;
+      val rules' = Net.insert_term eq_rrule (term_of elhs, rrule2) rules;
+    in (rules', prems, bounds, depth, context) end)
+  handle Net.INSERT => (cond_warn_thm "Ignoring duplicate rewrite rule:" ss thm; ss));
+
+fun vperm (Var _, Var _) = true
+  | vperm (Abs (_, _, s), Abs (_, _, t)) = vperm (s, t)
+  | vperm (t1 $ t2, u1 $ u2) = vperm (t1, u1) andalso vperm (t2, u2)
+  | vperm (t, u) = (t = u);
+
+fun var_perm (t, u) =
+  vperm (t, u) andalso eq_set (op =) (Term.add_vars t [], Term.add_vars u []);
+
+(*simple test for looping rewrite rules and stupid orientations*)
+fun default_reorient thy prems lhs rhs =
+  rewrite_rule_extra_vars prems lhs rhs
+    orelse
+  is_Var (head_of lhs)
+    orelse
+(* turns t = x around, which causes a headache if x is a local variable -
+   usually it is very useful :-(
+  is_Free rhs andalso not(is_Free lhs) andalso not(Logic.occs(rhs,lhs))
+  andalso not(exists_subterm is_Var lhs)
+    orelse
+*)
+  exists (fn t => Logic.occs (lhs, t)) (rhs :: prems)
+    orelse
+  null prems andalso Pattern.matches thy (lhs, rhs)
+    (*the condition "null prems" is necessary because conditional rewrites
+      with extra variables in the conditions may terminate although
+      the rhs is an instance of the lhs; example: ?m < ?n ==> f(?n) == f(?m)*)
+    orelse
+  is_Const lhs andalso not (is_Const rhs);
+
+fun decomp_simp thm =
+  let
+    val thy = Thm.theory_of_thm thm;
+    val prop = Thm.prop_of thm;
+    val prems = Logic.strip_imp_prems prop;
+    val concl = Drule.strip_imp_concl (Thm.cprop_of thm);
+    val (lhs, rhs) = Thm.dest_equals concl handle TERM _ =>
+      raise SIMPLIFIER ("Rewrite rule not a meta-equality", thm);
+    val elhs = Thm.dest_arg (Thm.cprop_of (Thm.eta_conversion lhs));
+    val elhs = if term_of elhs aconv term_of lhs then lhs else elhs;  (*share identical copies*)
+    val erhs = Envir.eta_contract (term_of rhs);
+    val perm =
+      var_perm (term_of elhs, erhs) andalso
+      not (term_of elhs aconv erhs) andalso
+      not (is_Var (term_of elhs));
+  in (thy, prems, term_of lhs, elhs, term_of rhs, perm) end;
+
+fun decomp_simp' thm =
+  let val (_, _, lhs, _, rhs, _) = decomp_simp thm in
+    if Thm.nprems_of thm > 0 then raise SIMPLIFIER ("Bad conditional rewrite rule", thm)
+    else (lhs, rhs)
+  end;
+
+fun mk_eq_True (ss as Simpset (_, {mk_rews = {mk_eq_True, ...}, ...})) (thm, name) =
+  (case mk_eq_True ss thm of
+    NONE => []
+  | SOME eq_True =>
+      let
+        val (_, _, lhs, elhs, _, _) = decomp_simp eq_True;
+      in [{thm = eq_True, name = name, lhs = lhs, elhs = elhs, perm = false}] end);
+
+(*create the rewrite rule and possibly also the eq_True variant,
+  in case there are extra vars on the rhs*)
+fun rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm2) =
+  let val rrule = {thm = thm, name = name, lhs = lhs, elhs = elhs, perm = false} in
+    if rewrite_rule_extra_vars [] lhs rhs then
+      mk_eq_True ss (thm2, name) @ [rrule]
+    else [rrule]
+  end;
+
+fun mk_rrule ss (thm, name) =
+  let val (_, prems, lhs, elhs, rhs, perm) = decomp_simp thm in
+    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
+    else
+      (*weak test for loops*)
+      if rewrite_rule_extra_vars prems lhs rhs orelse is_Var (term_of elhs)
+      then mk_eq_True ss (thm, name)
+      else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
+  end;
+
+fun orient_rrule ss (thm, name) =
+  let
+    val (thy, prems, lhs, elhs, rhs, perm) = decomp_simp thm;
+    val Simpset (_, {mk_rews = {reorient, mk_sym, ...}, ...}) = ss;
+  in
+    if perm then [{thm = thm, name = name, lhs = lhs, elhs = elhs, perm = true}]
+    else if reorient thy prems lhs rhs then
+      if reorient thy prems rhs lhs
+      then mk_eq_True ss (thm, name)
+      else
+        (case mk_sym ss thm of
+          NONE => []
+        | SOME thm' =>
+            let val (_, _, lhs', elhs', rhs', _) = decomp_simp thm'
+            in rrule_eq_True (thm', name, lhs', elhs', rhs', ss, thm) end)
+    else rrule_eq_True (thm, name, lhs, elhs, rhs, ss, thm)
+  end;
+
+fun extract_rews (ss as Simpset (_, {mk_rews = {mk, ...}, ...}), thms) =
+  maps (fn thm => map (rpair (Thm.get_name_hint thm)) (mk ss thm)) thms;
+
+fun extract_safe_rrules (ss, thm) =
+  maps (orient_rrule ss) (extract_rews (ss, [thm]));
+
+
+(* add/del rules explicitly *)
+
+fun comb_simps comb mk_rrule (ss, thms) =
+  let
+    val rews = extract_rews (ss, thms);
+  in fold (fold comb o mk_rrule) rews ss end;
+
+fun ss addsimps thms =
+  comb_simps insert_rrule (mk_rrule ss) (ss, thms);
+
+fun ss delsimps thms =
+  comb_simps del_rrule (map mk_rrule2 o mk_rrule ss) (ss, thms);
+
+fun add_simp thm ss = ss addsimps [thm];
+fun del_simp thm ss = ss delsimps [thm];
+
+
+(* congs *)
+
+fun cong_name (Const (a, _)) = SOME a
+  | cong_name (Free (a, _)) = SOME ("Free: " ^ a)
+  | cong_name _ = NONE;
+
+local
+
+fun is_full_cong_prems [] [] = true
+  | is_full_cong_prems [] _ = false
+  | is_full_cong_prems (p :: prems) varpairs =
+      (case Logic.strip_assums_concl p of
+        Const ("==", _) $ lhs $ rhs =>
+          let val (x, xs) = strip_comb lhs and (y, ys) = strip_comb rhs in
+            is_Var x andalso forall is_Bound xs andalso
+            not (has_duplicates (op =) xs) andalso xs = ys andalso
+            member (op =) varpairs (x, y) andalso
+            is_full_cong_prems prems (remove (op =) (x, y) varpairs)
+          end
+      | _ => false);
+
+fun is_full_cong thm =
+  let
+    val prems = prems_of thm and concl = concl_of thm;
+    val (lhs, rhs) = Logic.dest_equals concl;
+    val (f, xs) = strip_comb lhs and (g, ys) = strip_comb rhs;
+  in
+    f = g andalso not (has_duplicates (op =) (xs @ ys)) andalso length xs = length ys andalso
+    is_full_cong_prems prems (xs ~~ ys)
+  end;
+
+fun add_cong (ss, thm) = ss |>
+  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
+    let
+      val (lhs, _) = Thm.dest_equals (Drule.strip_imp_concl (Thm.cprop_of thm))
+        handle TERM _ => raise SIMPLIFIER ("Congruence not a meta-equality", thm);
+    (*val lhs = Envir.eta_contract lhs;*)
+      val a = the (cong_name (head_of (term_of lhs))) handle Option.Option =>
+        raise SIMPLIFIER ("Congruence must start with a constant or free variable", thm);
+      val (xs, weak) = congs;
+      val _ =
+        if AList.defined (op =) xs a
+        then if_visible ss warning ("Overwriting congruence rule for " ^ quote a)
+        else ();
+      val xs' = AList.update (op =) (a, thm) xs;
+      val weak' = if is_full_cong thm then weak else a :: weak;
+    in ((xs', weak'), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
+
+fun del_cong (ss, thm) = ss |>
+  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
+    let
+      val (lhs, _) = Logic.dest_equals (Thm.concl_of thm) handle TERM _ =>
+        raise SIMPLIFIER ("Congruence not a meta-equality", thm);
+    (*val lhs = Envir.eta_contract lhs;*)
+      val a = the (cong_name (head_of lhs)) handle Option.Option =>
+        raise SIMPLIFIER ("Congruence must start with a constant", thm);
+      val (xs, _) = congs;
+      val xs' = filter_out (fn (x : string, _) => x = a) xs;
+      val weak' = xs' |> map_filter (fn (a, thm) =>
+        if is_full_cong thm then NONE else SOME a);
+    in ((xs', weak'), procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) end);
+
+fun mk_cong (ss as Simpset (_, {mk_rews = {mk_cong = f, ...}, ...})) = f ss;
+
+in
+
+val (op addeqcongs) = Library.foldl add_cong;
+val (op deleqcongs) = Library.foldl del_cong;
+
+fun ss addcongs congs = ss addeqcongs map (mk_cong ss) congs;
+fun ss delcongs congs = ss deleqcongs map (mk_cong ss) congs;
+
+end;
+
+
+(* simprocs *)
+
+datatype simproc =
+  Simproc of
+    {name: string,
+     lhss: cterm list,
+     proc: morphism -> simpset -> cterm -> thm option,
+     id: stamp * thm list};
+
+fun eq_simproc (Simproc {id = id1, ...}, Simproc {id = id2, ...}) = eq_procid (id1, id2);
+
+fun morph_simproc phi (Simproc {name, lhss, proc, id = (s, ths)}) =
+  Simproc
+   {name = name,
+    lhss = map (Morphism.cterm phi) lhss,
+    proc = Morphism.transform phi proc,
+    id = (s, Morphism.fact phi ths)};
+
+fun make_simproc {name, lhss, proc, identifier} =
+  Simproc {name = name, lhss = lhss, proc = proc, id = (stamp (), identifier)};
+
+fun mk_simproc name lhss proc =
+  make_simproc {name = name, lhss = lhss, proc = fn _ => fn ss => fn ct =>
+    proc (ProofContext.theory_of (the_context ss)) ss (Thm.term_of ct), identifier = []};
+
+(* FIXME avoid global thy and Logic.varify_global *)
+fun simproc_global_i thy name = mk_simproc name o map (Thm.cterm_of thy o Logic.varify_global);
+fun simproc_global thy name = simproc_global_i thy name o map (Syntax.read_term_global thy);
+
+
+local
+
+fun add_proc (proc as Proc {name, lhs, ...}) ss =
+ (trace_cterm false (fn () => "Adding simplification procedure " ^ quote name ^ " for") ss lhs;
+  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
+    (congs, Net.insert_term eq_proc (term_of lhs, proc) procs,
+      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
+  handle Net.INSERT =>
+    (if_visible ss warning ("Ignoring duplicate simplification procedure " ^ quote name); ss));
+
+fun del_proc (proc as Proc {name, lhs, ...}) ss =
+  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
+    (congs, Net.delete_term eq_proc (term_of lhs, proc) procs,
+      mk_rews, termless, subgoal_tac, loop_tacs, solvers)) ss
+  handle Net.DELETE =>
+    (if_visible ss warning ("Simplification procedure " ^ quote name ^ " not in simpset"); ss);
+
+fun prep_procs (Simproc {name, lhss, proc, id}) =
+  lhss |> map (fn lhs => Proc {name = name, lhs = lhs, proc = Morphism.form proc, id = id});
+
+in
+
+fun ss addsimprocs ps = fold (fold add_proc o prep_procs) ps ss;
+fun ss delsimprocs ps = fold (fold del_proc o prep_procs) ps ss;
+
+end;
+
+
+(* mk_rews *)
+
+local
+
+fun map_mk_rews f = map_simpset2 (fn (congs, procs, {mk, mk_cong, mk_sym, mk_eq_True, reorient},
+      termless, subgoal_tac, loop_tacs, solvers) =>
+  let
+    val (mk', mk_cong', mk_sym', mk_eq_True', reorient') =
+      f (mk, mk_cong, mk_sym, mk_eq_True, reorient);
+    val mk_rews' = {mk = mk', mk_cong = mk_cong', mk_sym = mk_sym', mk_eq_True = mk_eq_True',
+      reorient = reorient'};
+  in (congs, procs, mk_rews', termless, subgoal_tac, loop_tacs, solvers) end);
+
+in
+
+fun mksimps (ss as Simpset (_, {mk_rews = {mk, ...}, ...})) = mk ss;
+
+fun ss setmksimps mk = ss |> map_mk_rews (fn (_, mk_cong, mk_sym, mk_eq_True, reorient) =>
+  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
+
+fun ss setmkcong mk_cong = ss |> map_mk_rews (fn (mk, _, mk_sym, mk_eq_True, reorient) =>
+  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
+
+fun ss setmksym mk_sym = ss |> map_mk_rews (fn (mk, mk_cong, _, mk_eq_True, reorient) =>
+  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
+
+fun ss setmkeqTrue mk_eq_True = ss |> map_mk_rews (fn (mk, mk_cong, mk_sym, _, reorient) =>
+  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
+
+fun set_reorient reorient = map_mk_rews (fn (mk, mk_cong, mk_sym, mk_eq_True, _) =>
+  (mk, mk_cong, mk_sym, mk_eq_True, reorient));
+
+end;
+
+
+(* termless *)
+
+fun ss settermless termless = ss |>
+  map_simpset2 (fn (congs, procs, mk_rews, _, subgoal_tac, loop_tacs, solvers) =>
+   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
+
+
+(* tactics *)
+
+fun ss setsubgoaler subgoal_tac = ss |>
+  map_simpset2 (fn (congs, procs, mk_rews, termless, _, loop_tacs, solvers) =>
+   (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers));
+
+fun ss setloop' tac = ss |>
+  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, _, solvers) =>
+   (congs, procs, mk_rews, termless, subgoal_tac, [("", tac)], solvers));
+
+fun ss setloop tac = ss setloop' (K tac);
+
+fun ss addloop' (name, tac) = ss |>
+  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
+    (congs, procs, mk_rews, termless, subgoal_tac,
+     (if AList.defined (op =) loop_tacs name
+      then if_visible ss warning ("Overwriting looper " ^ quote name)
+      else (); AList.update (op =) (name, tac) loop_tacs), solvers));
+
+fun ss addloop (name, tac) = ss addloop' (name, K tac);
+
+fun ss delloop name = ss |>
+  map_simpset2 (fn (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, solvers) =>
+    (congs, procs, mk_rews, termless, subgoal_tac,
+     (if AList.defined (op =) loop_tacs name then ()
+      else if_visible ss warning ("No such looper in simpset: " ^ quote name);
+      AList.delete (op =) name loop_tacs), solvers));
+
+fun ss setSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
+  subgoal_tac, loop_tacs, (unsafe_solvers, _)) =>
+    (congs, procs, mk_rews, termless, subgoal_tac, loop_tacs, (unsafe_solvers, [solver])));
+
+fun ss addSSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
+  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
+    subgoal_tac, loop_tacs, (unsafe_solvers, insert eq_solver solver solvers)));
+
+fun ss setSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
+  subgoal_tac, loop_tacs, (_, solvers)) => (congs, procs, mk_rews, termless,
+    subgoal_tac, loop_tacs, ([solver], solvers)));
+
+fun ss addSolver solver = ss |> map_simpset2 (fn (congs, procs, mk_rews, termless,
+  subgoal_tac, loop_tacs, (unsafe_solvers, solvers)) => (congs, procs, mk_rews, termless,
+    subgoal_tac, loop_tacs, (insert eq_solver solver unsafe_solvers, solvers)));
+
+fun set_solvers solvers = map_simpset2 (fn (congs, procs, mk_rews, termless,
+  subgoal_tac, loop_tacs, _) => (congs, procs, mk_rews, termless,
+  subgoal_tac, loop_tacs, (solvers, solvers)));
+
+
+(* empty *)
+
+fun init_ss mk_rews termless subgoal_tac solvers =
+  make_simpset ((Net.empty, [], (0, []), (0, Unsynchronized.ref false), NONE),
+    (([], []), Net.empty, mk_rews, termless, subgoal_tac, [], solvers));
+
+fun clear_ss (ss as Simpset (_, {mk_rews, termless, subgoal_tac, solvers, ...})) =
+  init_ss mk_rews termless subgoal_tac solvers
+  |> inherit_context ss;
+
+val empty_ss =
+  init_ss
+    {mk = fn _ => fn th => if can Logic.dest_equals (Thm.concl_of th) then [th] else [],
+      mk_cong = K I,
+      mk_sym = K (SOME o Drule.symmetric_fun),
+      mk_eq_True = K (K NONE),
+      reorient = default_reorient}
+    Term_Ord.termless (K (K no_tac)) ([], []);
+
+
+(* merge *)  (*NOTE: ignores some fields of 2nd simpset*)
+
+fun merge_ss (ss1, ss2) =
+  if pointer_eq (ss1, ss2) then ss1
+  else
+    let
+      val Simpset ({rules = rules1, prems = prems1, bounds = bounds1, depth = depth1, context = _},
+       {congs = (congs1, weak1), procs = procs1, mk_rews, termless, subgoal_tac,
+        loop_tacs = loop_tacs1, solvers = (unsafe_solvers1, solvers1)}) = ss1;
+      val Simpset ({rules = rules2, prems = prems2, bounds = bounds2, depth = depth2, context = _},
+       {congs = (congs2, weak2), procs = procs2, mk_rews = _, termless = _, subgoal_tac = _,
+        loop_tacs = loop_tacs2, solvers = (unsafe_solvers2, solvers2)}) = ss2;
+
+      val rules' = Net.merge eq_rrule (rules1, rules2);
+      val prems' = Thm.merge_thms (prems1, prems2);
+      val bounds' = if #1 bounds1 < #1 bounds2 then bounds2 else bounds1;
+      val depth' = if #1 depth1 < #1 depth2 then depth2 else depth1;
+      val congs' = merge (Thm.eq_thm_prop o pairself #2) (congs1, congs2);
+      val weak' = merge (op =) (weak1, weak2);
+      val procs' = Net.merge eq_proc (procs1, procs2);
+      val loop_tacs' = AList.merge (op =) (K true) (loop_tacs1, loop_tacs2);
+      val unsafe_solvers' = merge eq_solver (unsafe_solvers1, unsafe_solvers2);
+      val solvers' = merge eq_solver (solvers1, solvers2);
+    in
+      make_simpset ((rules', prems', bounds', depth', NONE), ((congs', weak'), procs',
+        mk_rews, termless, subgoal_tac, loop_tacs', (unsafe_solvers', solvers')))
+    end;
+
+
+(* dest_ss *)
+
+fun dest_ss (Simpset ({rules, ...}, {congs, procs, loop_tacs, solvers, ...})) =
+ {simps = Net.entries rules
+    |> map (fn {name, thm, ...} => (name, thm)),
+  procs = Net.entries procs
+    |> map (fn Proc {name, lhs, id, ...} => ((name, lhs), id))
+    |> partition_eq (eq_snd eq_procid)
+    |> map (fn ps => (fst (fst (hd ps)), map (snd o fst) ps)),
+  congs = #1 congs,
+  weak_congs = #2 congs,
+  loopers = map fst loop_tacs,
+  unsafe_solvers = map solver_name (#1 solvers),
+  safe_solvers = map solver_name (#2 solvers)};
+
+
+
+(** rewriting **)
+
+(*
+  Uses conversions, see:
+    L C Paulson, A higher-order implementation of rewriting,
+    Science of Computer Programming 3 (1983), pages 119-149.
+*)
+
+fun check_conv msg ss thm thm' =
+  let
+    val thm'' = Thm.transitive thm thm' handle THM _ =>
+     Thm.transitive thm (Thm.transitive
+       (Thm.symmetric (Drule.beta_eta_conversion (Thm.lhs_of thm'))) thm')
+  in if msg then trace_thm (fn () => "SUCCEEDED") ss thm' else (); SOME thm'' end
+  handle THM _ =>
+    let
+      val _ $ _ $ prop0 = Thm.prop_of thm;
+    in
+      trace_thm (fn () => "Proved wrong thm (Check subgoaler?)") ss thm';
+      trace_term false (fn () => "Should have proved:") ss prop0;
+      NONE
+    end;
+
+
+(* mk_procrule *)
+
+fun mk_procrule ss thm =
+  let val (_, prems, lhs, elhs, rhs, _) = decomp_simp thm in
+    if rewrite_rule_extra_vars prems lhs rhs
+    then (cond_warn_thm "Extra vars on rhs:" ss thm; [])
+    else [mk_rrule2 {thm = thm, name = "", lhs = lhs, elhs = elhs, perm = false}]
+  end;
+
+
+(* rewritec: conversion to apply the meta simpset to a term *)
+
+(*Since the rewriting strategy is bottom-up, we avoid re-normalizing already
+  normalized terms by carrying around the rhs of the rewrite rule just
+  applied. This is called the `skeleton'. It is decomposed in parallel
+  with the term. Once a Var is encountered, the corresponding term is
+  already in normal form.
+  skel0 is a dummy skeleton that is to enforce complete normalization.*)
+
+val skel0 = Bound 0;
+
+(*Use rhs as skeleton only if the lhs does not contain unnormalized bits.
+  The latter may happen iff there are weak congruence rules for constants
+  in the lhs.*)
+
+fun uncond_skel ((_, weak), (lhs, rhs)) =
+  if null weak then rhs  (*optimization*)
+  else if exists_Const (member (op =) weak o #1) lhs then skel0
+  else rhs;
+
+(*Behaves like unconditional rule if rhs does not contain vars not in the lhs.
+  Otherwise those vars may become instantiated with unnormalized terms
+  while the premises are solved.*)
+
+fun cond_skel (args as (_, (lhs, rhs))) =
+  if subset (op =) (Term.add_vars rhs [], Term.add_vars lhs []) then uncond_skel args
+  else skel0;
+
+(*
+  Rewriting -- we try in order:
+    (1) beta reduction
+    (2) unconditional rewrite rules
+    (3) conditional rewrite rules
+    (4) simplification procedures
+
+  IMPORTANT: rewrite rules must not introduce new Vars or TVars!
+*)
+
+fun rewritec (prover, thyt, maxt) ss t =
+  let
+    val ctxt = the_context ss;
+    val Simpset ({rules, ...}, {congs, procs, termless, ...}) = ss;
+    val eta_thm = Thm.eta_conversion t;
+    val eta_t' = Thm.rhs_of eta_thm;
+    val eta_t = term_of eta_t';
+    fun rew {thm, name, lhs, elhs, extra, fo, perm} =
+      let
+        val prop = Thm.prop_of thm;
+        val (rthm, elhs') =
+          if maxt = ~1 orelse not extra then (thm, elhs)
+          else (Thm.incr_indexes (maxt + 1) thm, Thm.incr_indexes_cterm (maxt + 1) elhs);
+        val insts =
+          if fo then Thm.first_order_match (elhs', eta_t')
+          else Thm.match (elhs', eta_t');
+        val thm' = Thm.instantiate insts (Thm.rename_boundvars lhs eta_t rthm);
+        val prop' = Thm.prop_of thm';
+        val unconditional = (Logic.count_prems prop' = 0);
+        val (lhs', rhs') = Logic.dest_equals (Logic.strip_imp_concl prop')
+      in
+        if perm andalso not (termless (rhs', lhs'))
+        then (trace_named_thm (fn () => "Cannot apply permutative rewrite rule") ss (thm, name);
+              trace_thm (fn () => "Term does not become smaller:") ss thm'; NONE)
+        else (trace_named_thm (fn () => "Applying instance of rewrite rule") ss (thm, name);
+           if unconditional
+           then
+             (trace_thm (fn () => "Rewriting:") ss thm';
+              let
+                val lr = Logic.dest_equals prop;
+                val SOME thm'' = check_conv false ss eta_thm thm';
+              in SOME (thm'', uncond_skel (congs, lr)) end)
+           else
+             (trace_thm (fn () => "Trying to rewrite:") ss thm';
+              if simp_depth ss > Config.get ctxt simp_depth_limit
+              then
+                let
+                  val s = "simp_depth_limit exceeded - giving up";
+                  val _ = trace false (fn () => s) ss;
+                  val _ = if_visible ss warning s;
+                in NONE end
+              else
+              case prover ss thm' of
+                NONE => (trace_thm (fn () => "FAILED") ss thm'; NONE)
+              | SOME thm2 =>
+                  (case check_conv true ss eta_thm thm2 of
+                     NONE => NONE |
+                     SOME thm2' =>
+                       let val concl = Logic.strip_imp_concl prop
+                           val lr = Logic.dest_equals concl
+                       in SOME (thm2', cond_skel (congs, lr)) end)))
+      end
+
+    fun rews [] = NONE
+      | rews (rrule :: rrules) =
+          let val opt = rew rrule handle Pattern.MATCH => NONE
+          in case opt of NONE => rews rrules | some => some end;
+
+    fun sort_rrules rrs =
+      let
+        fun is_simple ({thm, ...}: rrule) =
+          (case Thm.prop_of thm of
+            Const ("==", _) $ _ $ _ => true
+          | _ => false);
+        fun sort [] (re1, re2) = re1 @ re2
+          | sort (rr :: rrs) (re1, re2) =
+              if is_simple rr
+              then sort rrs (rr :: re1, re2)
+              else sort rrs (re1, rr :: re2);
+      in sort rrs ([], []) end;
+
+    fun proc_rews [] = NONE
+      | proc_rews (Proc {name, proc, lhs, ...} :: ps) =
+          if Pattern.matches thyt (Thm.term_of lhs, Thm.term_of t) then
+            (debug_term false (fn () => "Trying procedure " ^ quote name ^ " on:") ss eta_t;
+             case proc ss eta_t' of
+               NONE => (debug false (fn () => "FAILED") ss; proc_rews ps)
+             | SOME raw_thm =>
+                 (trace_thm (fn () => "Procedure " ^ quote name ^ " produced rewrite rule:")
+                   ss raw_thm;
+                  (case rews (mk_procrule ss raw_thm) of
+                    NONE => (trace_cterm true (fn () => "IGNORED result of simproc " ^ quote name ^
+                      " -- does not match") ss t; proc_rews ps)
+                  | some => some)))
+          else proc_rews ps;
+  in
+    (case eta_t of
+      Abs _ $ _ => SOME (Thm.transitive eta_thm (Thm.beta_conversion false eta_t'), skel0)
+    | _ =>
+      (case rews (sort_rrules (Net.match_term rules eta_t)) of
+        NONE => proc_rews (Net.match_term procs eta_t)
+      | some => some))
+  end;
+
+
+(* conversion to apply a congruence rule to a term *)
+
+fun congc prover ss maxt cong t =
+  let val rthm = Thm.incr_indexes (maxt + 1) cong;
+      val rlhs = fst (Thm.dest_equals (Drule.strip_imp_concl (cprop_of rthm)));
+      val insts = Thm.match (rlhs, t)
+      (* Thm.match can raise Pattern.MATCH;
+         is handled when congc is called *)
+      val thm' = Thm.instantiate insts (Thm.rename_boundvars (term_of rlhs) (term_of t) rthm);
+      val _ = trace_thm (fn () => "Applying congruence rule:") ss thm';
+      fun err (msg, thm) = (trace_thm (fn () => msg) ss thm; NONE)
+  in
+    (case prover thm' of
+      NONE => err ("Congruence proof failed.  Could not prove", thm')
+    | SOME thm2 =>
+        (case check_conv true ss (Drule.beta_eta_conversion t) thm2 of
+          NONE => err ("Congruence proof failed.  Should not have proved", thm2)
+        | SOME thm2' =>
+            if op aconv (pairself term_of (Thm.dest_equals (cprop_of thm2')))
+            then NONE else SOME thm2'))
+  end;
+
+val (cA, (cB, cC)) =
+  apsnd Thm.dest_equals (Thm.dest_implies (hd (cprems_of Drule.imp_cong)));
+
+fun transitive1 NONE NONE = NONE
+  | transitive1 (SOME thm1) NONE = SOME thm1
+  | transitive1 NONE (SOME thm2) = SOME thm2
+  | transitive1 (SOME thm1) (SOME thm2) = SOME (Thm.transitive thm1 thm2)
+
+fun transitive2 thm = transitive1 (SOME thm);
+fun transitive3 thm = transitive1 thm o SOME;
+
+fun bottomc ((simprem, useprem, mutsimp), prover, thy, maxidx) =
+  let
+    fun botc skel ss t =
+          if is_Var skel then NONE
+          else
+          (case subc skel ss t of
+             some as SOME thm1 =>
+               (case rewritec (prover, thy, maxidx) ss (Thm.rhs_of thm1) of
+                  SOME (thm2, skel2) =>
+                    transitive2 (Thm.transitive thm1 thm2)
+                      (botc skel2 ss (Thm.rhs_of thm2))
+                | NONE => some)
+           | NONE =>
+               (case rewritec (prover, thy, maxidx) ss t of
+                  SOME (thm2, skel2) => transitive2 thm2
+                    (botc skel2 ss (Thm.rhs_of thm2))
+                | NONE => NONE))
+
+    and try_botc ss t =
+          (case botc skel0 ss t of
+             SOME trec1 => trec1 | NONE => (Thm.reflexive t))
+
+    and subc skel (ss as Simpset ({bounds, ...}, {congs, ...})) t0 =
+       (case term_of t0 of
+           Abs (a, T, _) =>
+             let
+                 val b = Name.bound (#1 bounds);
+                 val (v, t') = Thm.dest_abs (SOME b) t0;
+                 val b' = #1 (Term.dest_Free (Thm.term_of v));
+                 val _ =
+                   if b <> b' then
+                     warning ("Simplifier: renamed bound variable " ^
+                       quote b ^ " to " ^ quote b' ^ Position.str_of (Position.thread_data ()))
+                   else ();
+                 val ss' = add_bound ((b', T), a) ss;
+                 val skel' = case skel of Abs (_, _, sk) => sk | _ => skel0;
+             in case botc skel' ss' t' of
+                  SOME thm => SOME (Thm.abstract_rule a v thm)
+                | NONE => NONE
+             end
+         | t $ _ => (case t of
+             Const ("==>", _) $ _  => impc t0 ss
+           | Abs _ =>
+               let val thm = Thm.beta_conversion false t0
+               in case subc skel0 ss (Thm.rhs_of thm) of
+                    NONE => SOME thm
+                  | SOME thm' => SOME (Thm.transitive thm thm')
+               end
+           | _  =>
+               let fun appc () =
+                     let
+                       val (tskel, uskel) = case skel of
+                           tskel $ uskel => (tskel, uskel)
+                         | _ => (skel0, skel0);
+                       val (ct, cu) = Thm.dest_comb t0
+                     in
+                     (case botc tskel ss ct of
+                        SOME thm1 =>
+                          (case botc uskel ss cu of
+                             SOME thm2 => SOME (Thm.combination thm1 thm2)
+                           | NONE => SOME (Thm.combination thm1 (Thm.reflexive cu)))
+                      | NONE =>
+                          (case botc uskel ss cu of
+                             SOME thm1 => SOME (Thm.combination (Thm.reflexive ct) thm1)
+                           | NONE => NONE))
+                     end
+                   val (h, ts) = strip_comb t
+               in case cong_name h of
+                    SOME a =>
+                      (case AList.lookup (op =) (fst congs) a of
+                         NONE => appc ()
+                       | SOME cong =>
+  (*post processing: some partial applications h t1 ... tj, j <= length ts,
+    may be a redex. Example: map (%x. x) = (%xs. xs) wrt map_cong*)
+                          (let
+                             val thm = congc (prover ss) ss maxidx cong t0;
+                             val t = the_default t0 (Option.map Thm.rhs_of thm);
+                             val (cl, cr) = Thm.dest_comb t
+                             val dVar = Var(("", 0), dummyT)
+                             val skel =
+                               list_comb (h, replicate (length ts) dVar)
+                           in case botc skel ss cl of
+                                NONE => thm
+                              | SOME thm' => transitive3 thm
+                                  (Thm.combination thm' (Thm.reflexive cr))
+                           end handle Pattern.MATCH => appc ()))
+                  | _ => appc ()
+               end)
+         | _ => NONE)
+
+    and impc ct ss =
+      if mutsimp then mut_impc0 [] ct [] [] ss else nonmut_impc ct ss
+
+    and rules_of_prem ss prem =
+      if maxidx_of_term (term_of prem) <> ~1
+      then (trace_cterm true
+        (fn () => "Cannot add premise as rewrite rule because it contains (type) unknowns:")
+          ss prem; ([], NONE))
+      else
+        let val asm = Thm.assume prem
+        in (extract_safe_rrules (ss, asm), SOME asm) end
+
+    and add_rrules (rrss, asms) ss =
+      (fold o fold) insert_rrule rrss ss |> add_prems (map_filter I asms)
+
+    and disch r prem eq =
+      let
+        val (lhs, rhs) = Thm.dest_equals (Thm.cprop_of eq);
+        val eq' = Thm.implies_elim (Thm.instantiate
+          ([], [(cA, prem), (cB, lhs), (cC, rhs)]) Drule.imp_cong)
+          (Thm.implies_intr prem eq)
+      in if not r then eq' else
+        let
+          val (prem', concl) = Thm.dest_implies lhs;
+          val (prem'', _) = Thm.dest_implies rhs
+        in Thm.transitive (Thm.transitive
+          (Thm.instantiate ([], [(cA, prem'), (cB, prem), (cC, concl)])
+             Drule.swap_prems_eq) eq')
+          (Thm.instantiate ([], [(cA, prem), (cB, prem''), (cC, concl)])
+             Drule.swap_prems_eq)
+        end
+      end
+
+    and rebuild [] _ _ _ _ eq = eq
+      | rebuild (prem :: prems) concl (_ :: rrss) (_ :: asms) ss eq =
+          let
+            val ss' = add_rrules (rev rrss, rev asms) ss;
+            val concl' =
+              Drule.mk_implies (prem, the_default concl (Option.map Thm.rhs_of eq));
+            val dprem = Option.map (disch false prem)
+          in
+            (case rewritec (prover, thy, maxidx) ss' concl' of
+              NONE => rebuild prems concl' rrss asms ss (dprem eq)
+            | SOME (eq', _) => transitive2 (fold (disch false)
+                  prems (the (transitive3 (dprem eq) eq')))
+                (mut_impc0 (rev prems) (Thm.rhs_of eq') (rev rrss) (rev asms) ss))
+          end
+
+    and mut_impc0 prems concl rrss asms ss =
+      let
+        val prems' = strip_imp_prems concl;
+        val (rrss', asms') = split_list (map (rules_of_prem ss) prems')
+      in
+        mut_impc (prems @ prems') (strip_imp_concl concl) (rrss @ rrss')
+          (asms @ asms') [] [] [] [] ss ~1 ~1
+      end
+
+    and mut_impc [] concl [] [] prems' rrss' asms' eqns ss changed k =
+        transitive1 (fold (fn (eq1, prem) => fn eq2 => transitive1 eq1
+            (Option.map (disch false prem) eq2)) (eqns ~~ prems') NONE)
+          (if changed > 0 then
+             mut_impc (rev prems') concl (rev rrss') (rev asms')
+               [] [] [] [] ss ~1 changed
+           else rebuild prems' concl rrss' asms' ss
+             (botc skel0 (add_rrules (rev rrss', rev asms') ss) concl))
+
+      | mut_impc (prem :: prems) concl (rrs :: rrss) (asm :: asms)
+          prems' rrss' asms' eqns ss changed k =
+        case (if k = 0 then NONE else botc skel0 (add_rrules
+          (rev rrss' @ rrss, rev asms' @ asms) ss) prem) of
+            NONE => mut_impc prems concl rrss asms (prem :: prems')
+              (rrs :: rrss') (asm :: asms') (NONE :: eqns) ss changed
+              (if k = 0 then 0 else k - 1)
+          | SOME eqn =>
+            let
+              val prem' = Thm.rhs_of eqn;
+              val tprems = map term_of prems;
+              val i = 1 + fold Integer.max (map (fn p =>
+                find_index (fn q => q aconv p) tprems) (#hyps (rep_thm eqn))) ~1;
+              val (rrs', asm') = rules_of_prem ss prem'
+            in mut_impc prems concl rrss asms (prem' :: prems')
+              (rrs' :: rrss') (asm' :: asms') (SOME (fold_rev (disch true)
+                (take i prems)
+                (Drule.imp_cong_rule eqn (Thm.reflexive (Drule.list_implies
+                  (drop i prems, concl))))) :: eqns)
+                  ss (length prems') ~1
+            end
+
+     (*legacy code - only for backwards compatibility*)
+    and nonmut_impc ct ss =
+      let
+        val (prem, conc) = Thm.dest_implies ct;
+        val thm1 = if simprem then botc skel0 ss prem else NONE;
+        val prem1 = the_default prem (Option.map Thm.rhs_of thm1);
+        val ss1 =
+          if not useprem then ss
+          else add_rrules (apsnd single (apfst single (rules_of_prem ss prem1))) ss
+      in
+        (case botc skel0 ss1 conc of
+          NONE =>
+            (case thm1 of
+              NONE => NONE
+            | SOME thm1' => SOME (Drule.imp_cong_rule thm1' (Thm.reflexive conc)))
+        | SOME thm2 =>
+            let val thm2' = disch false prem1 thm2 in
+              (case thm1 of
+                NONE => SOME thm2'
+              | SOME thm1' =>
+                 SOME (Thm.transitive (Drule.imp_cong_rule thm1' (Thm.reflexive conc)) thm2'))
+            end)
+      end
+
+ in try_botc end;
+
+
+(* Meta-rewriting: rewrites t to u and returns the theorem t==u *)
+
+(*
+  Parameters:
+    mode = (simplify A,
+            use A in simplifying B,
+            use prems of B (if B is again a meta-impl.) to simplify A)
+           when simplifying A ==> B
+    prover: how to solve premises in conditional rewrites and congruences
+*)
+
+val debug_bounds = Unsynchronized.ref false;
+
+fun check_bounds ss ct =
+  if ! debug_bounds then
+    let
+      val Simpset ({bounds = (_, bounds), ...}, _) = ss;
+      val bs = fold_aterms (fn Free (x, _) =>
+          if Name.is_bound x andalso not (AList.defined eq_bound bounds x)
+          then insert (op =) x else I
+        | _ => I) (term_of ct) [];
+    in
+      if null bs then ()
+      else print_term_global ss true ("Simplifier: term contains loose bounds: " ^ commas_quote bs)
+        (Thm.theory_of_cterm ct) (Thm.term_of ct)
+    end
+  else ();
+
+fun rewrite_cterm mode prover raw_ss raw_ct =
+  let
+    val thy = Thm.theory_of_cterm raw_ct;
+    val ct = Thm.adjust_maxidx_cterm ~1 raw_ct;
+    val {maxidx, ...} = Thm.rep_cterm ct;
+    val ss = inc_simp_depth (activate_context thy raw_ss);
+    val depth = simp_depth ss;
+    val _ =
+      if depth mod 20 = 0 then
+        if_visible ss warning ("Simplification depth " ^ string_of_int depth)
+      else ();
+    val _ = trace_cterm false (fn () => "SIMPLIFIER INVOKED ON THE FOLLOWING TERM:") ss ct;
+    val _ = check_bounds ss ct;
+  in bottomc (mode, Option.map Drule.flexflex_unique oo prover, thy, maxidx) ss ct end;
+
+val simple_prover =
+  SINGLE o (fn ss => ALLGOALS (resolve_tac (prems_of_ss ss)));
+
+fun rewrite _ [] ct = Thm.reflexive ct
+  | rewrite full thms ct = rewrite_cterm (full, false, false) simple_prover
+      (global_context (Thm.theory_of_cterm ct) empty_ss addsimps thms) ct;
+
+fun simplify full thms = Conv.fconv_rule (rewrite full thms);
+val rewrite_rule = simplify true;
+
+(*simple term rewriting -- no proof*)
+fun rewrite_term thy rules procs =
+  Pattern.rewrite_term thy (map decomp_simp' rules) procs;
+
+fun rewrite_thm mode prover ss = Conv.fconv_rule (rewrite_cterm mode prover ss);
+
+(*Rewrite the subgoals of a proof state (represented by a theorem)*)
+fun rewrite_goals_rule thms th =
+  Conv.fconv_rule (Conv.prems_conv ~1 (rewrite_cterm (true, true, true) simple_prover
+    (global_context (Thm.theory_of_thm th) empty_ss addsimps thms))) th;
+
+(*Rewrite the subgoal of a proof state (represented by a theorem)*)
+fun rewrite_goal_rule mode prover ss i thm =
+  if 0 < i andalso i <= Thm.nprems_of thm
+  then Conv.gconv_rule (rewrite_cterm mode prover ss) i thm
+  else raise THM ("rewrite_goal_rule", i, [thm]);
+
+
+(** meta-rewriting tactics **)
+
+(*Rewrite all subgoals*)
+fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
+fun rewtac def = rewrite_goals_tac [def];
+
+(*Rewrite one subgoal*)
+fun asm_rewrite_goal_tac mode prover_tac ss i thm =
+  if 0 < i andalso i <= Thm.nprems_of thm then
+    Seq.single (Conv.gconv_rule (rewrite_cterm mode (SINGLE o prover_tac) ss) i thm)
+  else Seq.empty;
+
+fun rewrite_goal_tac rews =
+  let val ss = empty_ss addsimps rews in
+    fn i => fn st => asm_rewrite_goal_tac (true, false, false) (K no_tac)
+      (global_context (Thm.theory_of_thm st) ss) i st
+  end;
+
+(*Prunes all redundant parameters from the proof state by rewriting.
+  DOES NOT rewrite main goal, where quantification over an unused bound
+    variable is sometimes done to avoid the need for cut_facts_tac.*)
+val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
+
+
+(* for folding definitions, handling critical pairs *)
+
+(*The depth of nesting in a term*)
+fun term_depth (Abs (_, _, t)) = 1 + term_depth t
+  | term_depth (f $ t) = 1 + Int.max (term_depth f, term_depth t)
+  | term_depth _ = 0;
+
+val lhs_of_thm = #1 o Logic.dest_equals o prop_of;
+
+(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
+  Returns longest lhs first to avoid folding its subexpressions.*)
+fun sort_lhs_depths defs =
+  let val keylist = AList.make (term_depth o lhs_of_thm) defs
+      val keys = sort_distinct (rev_order o int_ord) (map #2 keylist)
+  in map (AList.find (op =) keylist) keys end;
+
+val rev_defs = sort_lhs_depths o map Thm.symmetric;
+
+fun fold_rule defs = fold rewrite_rule (rev_defs defs);
+fun fold_goals_tac defs = EVERY (map rewrite_goals_tac (rev_defs defs));
+
+
+(* HHF normal form: !! before ==>, outermost !! generalized *)
+
+local
+
+fun gen_norm_hhf ss th =
+  (if Drule.is_norm_hhf (Thm.prop_of th) then th
+   else Conv.fconv_rule
+    (rewrite_cterm (true, false, false) (K (K NONE)) (global_context (Thm.theory_of_thm th) ss)) th)
+  |> Thm.adjust_maxidx_thm ~1
+  |> Drule.gen_all;
+
+val hhf_ss = empty_ss addsimps Drule.norm_hhf_eqs;
+
+in
+
+val norm_hhf = gen_norm_hhf hhf_ss;
+val norm_hhf_protect = gen_norm_hhf (hhf_ss addeqcongs [Drule.protect_cong]);
+
+end;
+
+end;
+
+structure Basic_Meta_Simplifier: BASIC_RAW_SIMPLIFIER = Raw_Simplifier;
+open Basic_Meta_Simplifier;