doc-src/IsarImplementation/Thy/document/Prelim.tex
changeset 30130 e23770bc97c8
parent 29762 e5324b8b4df5
child 30121 5c7bcb296600
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/IsarImplementation/Thy/document/Prelim.tex	Thu Feb 26 08:48:33 2009 -0800
@@ -0,0 +1,896 @@
+%
+\begin{isabellebody}%
+\def\isabellecontext{Prelim}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isatagtheory
+\isacommand{theory}\isamarkupfalse%
+\ Prelim\isanewline
+\isakeyword{imports}\ Base\isanewline
+\isakeyword{begin}%
+\endisatagtheory
+{\isafoldtheory}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isamarkupchapter{Preliminaries%
+}
+\isamarkuptrue%
+%
+\isamarkupsection{Contexts \label{sec:context}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+A logical context represents the background that is required for
+  formulating statements and composing proofs.  It acts as a medium to
+  produce formal content, depending on earlier material (declarations,
+  results etc.).
+
+  For example, derivations within the Isabelle/Pure logic can be
+  described as a judgment \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}}, which means that a
+  proposition \isa{{\isasymphi}} is derivable from hypotheses \isa{{\isasymGamma}}
+  within the theory \isa{{\isasymTheta}}.  There are logical reasons for
+  keeping \isa{{\isasymTheta}} and \isa{{\isasymGamma}} separate: theories can be
+  liberal about supporting type constructors and schematic
+  polymorphism of constants and axioms, while the inner calculus of
+  \isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymphi}} is strictly limited to Simple Type Theory (with
+  fixed type variables in the assumptions).
+
+  \medskip Contexts and derivations are linked by the following key
+  principles:
+
+  \begin{itemize}
+
+  \item Transfer: monotonicity of derivations admits results to be
+  transferred into a \emph{larger} context, i.e.\ \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}} implies \isa{{\isasymGamma}{\isacharprime}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\isactrlsub {\isacharprime}\ {\isasymphi}} for contexts \isa{{\isasymTheta}{\isacharprime}\ {\isasymsupseteq}\ {\isasymTheta}} and \isa{{\isasymGamma}{\isacharprime}\ {\isasymsupseteq}\ {\isasymGamma}}.
+
+  \item Export: discharge of hypotheses admits results to be exported
+  into a \emph{smaller} context, i.e.\ \isa{{\isasymGamma}{\isacharprime}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}}
+  implies \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymDelta}\ {\isasymLongrightarrow}\ {\isasymphi}} where \isa{{\isasymGamma}{\isacharprime}\ {\isasymsupseteq}\ {\isasymGamma}} and
+  \isa{{\isasymDelta}\ {\isacharequal}\ {\isasymGamma}{\isacharprime}\ {\isacharminus}\ {\isasymGamma}}.  Note that \isa{{\isasymTheta}} remains unchanged here,
+  only the \isa{{\isasymGamma}} part is affected.
+
+  \end{itemize}
+
+  \medskip By modeling the main characteristics of the primitive
+  \isa{{\isasymTheta}} and \isa{{\isasymGamma}} above, and abstracting over any
+  particular logical content, we arrive at the fundamental notions of
+  \emph{theory context} and \emph{proof context} in Isabelle/Isar.
+  These implement a certain policy to manage arbitrary \emph{context
+  data}.  There is a strongly-typed mechanism to declare new kinds of
+  data at compile time.
+
+  The internal bootstrap process of Isabelle/Pure eventually reaches a
+  stage where certain data slots provide the logical content of \isa{{\isasymTheta}} and \isa{{\isasymGamma}} sketched above, but this does not stop there!
+  Various additional data slots support all kinds of mechanisms that
+  are not necessarily part of the core logic.
+
+  For example, there would be data for canonical introduction and
+  elimination rules for arbitrary operators (depending on the
+  object-logic and application), which enables users to perform
+  standard proof steps implicitly (cf.\ the \isa{rule} method
+  \cite{isabelle-isar-ref}).
+
+  \medskip Thus Isabelle/Isar is able to bring forth more and more
+  concepts successively.  In particular, an object-logic like
+  Isabelle/HOL continues the Isabelle/Pure setup by adding specific
+  components for automated reasoning (classical reasoner, tableau
+  prover, structured induction etc.) and derived specification
+  mechanisms (inductive predicates, recursive functions etc.).  All of
+  this is ultimately based on the generic data management by theory
+  and proof contexts introduced here.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Theory context \label{sec:context-theory}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+A \emph{theory} is a data container with explicit name and unique
+  identifier.  Theories are related by a (nominal) sub-theory
+  relation, which corresponds to the dependency graph of the original
+  construction; each theory is derived from a certain sub-graph of
+  ancestor theories.
+
+  The \isa{merge} operation produces the least upper bound of two
+  theories, which actually degenerates into absorption of one theory
+  into the other (due to the nominal sub-theory relation).
+
+  The \isa{begin} operation starts a new theory by importing
+  several parent theories and entering a special \isa{draft} mode,
+  which is sustained until the final \isa{end} operation.  A draft
+  theory acts like a linear type, where updates invalidate earlier
+  versions.  An invalidated draft is called ``stale''.
+
+  The \isa{checkpoint} operation produces an intermediate stepping
+  stone that will survive the next update: both the original and the
+  changed theory remain valid and are related by the sub-theory
+  relation.  Checkpointing essentially recovers purely functional
+  theory values, at the expense of some extra internal bookkeeping.
+
+  The \isa{copy} operation produces an auxiliary version that has
+  the same data content, but is unrelated to the original: updates of
+  the copy do not affect the original, neither does the sub-theory
+  relation hold.
+
+  \medskip The example in \figref{fig:ex-theory} below shows a theory
+  graph derived from \isa{Pure}, with theory \isa{Length}
+  importing \isa{Nat} and \isa{List}.  The body of \isa{Length} consists of a sequence of updates, working mostly on
+  drafts.  Intermediate checkpoints may occur as well, due to the
+  history mechanism provided by the Isar top-level, cf.\
+  \secref{sec:isar-toplevel}.
+
+  \begin{figure}[htb]
+  \begin{center}
+  \begin{tabular}{rcccl}
+        &            & \isa{Pure} \\
+        &            & \isa{{\isasymdown}} \\
+        &            & \isa{FOL} \\
+        & $\swarrow$ &              & $\searrow$ & \\
+  \isa{Nat} &    &              &            & \isa{List} \\
+        & $\searrow$ &              & $\swarrow$ \\
+        &            & \isa{Length} \\
+        &            & \multicolumn{3}{l}{~~\hyperlink{keyword.imports}{\mbox{\isa{\isakeyword{imports}}}}} \\
+        &            & \multicolumn{3}{l}{~~\hyperlink{keyword.begin}{\mbox{\isa{\isakeyword{begin}}}}} \\
+        &            & $\vdots$~~ \\
+        &            & \isa{{\isasymbullet}}~~ \\
+        &            & $\vdots$~~ \\
+        &            & \isa{{\isasymbullet}}~~ \\
+        &            & $\vdots$~~ \\
+        &            & \multicolumn{3}{l}{~~\hyperlink{command.end}{\mbox{\isa{\isacommand{end}}}}} \\
+  \end{tabular}
+  \caption{A theory definition depending on ancestors}\label{fig:ex-theory}
+  \end{center}
+  \end{figure}
+
+  \medskip There is a separate notion of \emph{theory reference} for
+  maintaining a live link to an evolving theory context: updates on
+  drafts are propagated automatically.  Dynamic updating stops after
+  an explicit \isa{end} only.
+
+  Derived entities may store a theory reference in order to indicate
+  the context they belong to.  This implicitly assumes monotonic
+  reasoning, because the referenced context may become larger without
+  further notice.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+  \indexmltype{theory}\verb|type theory| \\
+  \indexml{Theory.subthy}\verb|Theory.subthy: theory * theory -> bool| \\
+  \indexml{Theory.merge}\verb|Theory.merge: theory * theory -> theory| \\
+  \indexml{Theory.checkpoint}\verb|Theory.checkpoint: theory -> theory| \\
+  \indexml{Theory.copy}\verb|Theory.copy: theory -> theory| \\
+  \end{mldecls}
+  \begin{mldecls}
+  \indexmltype{theory\_ref}\verb|type theory_ref| \\
+  \indexml{Theory.deref}\verb|Theory.deref: theory_ref -> theory| \\
+  \indexml{Theory.check\_thy}\verb|Theory.check_thy: theory -> theory_ref| \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item \verb|theory| represents theory contexts.  This is
+  essentially a linear type!  Most operations destroy the original
+  version, which then becomes ``stale''.
+
+  \item \verb|Theory.subthy|~\isa{{\isacharparenleft}thy\isactrlsub {\isadigit{1}}{\isacharcomma}\ thy\isactrlsub {\isadigit{2}}{\isacharparenright}}
+  compares theories according to the inherent graph structure of the
+  construction.  This sub-theory relation is a nominal approximation
+  of inclusion (\isa{{\isasymsubseteq}}) of the corresponding content.
+
+  \item \verb|Theory.merge|~\isa{{\isacharparenleft}thy\isactrlsub {\isadigit{1}}{\isacharcomma}\ thy\isactrlsub {\isadigit{2}}{\isacharparenright}}
+  absorbs one theory into the other.  This fails for unrelated
+  theories!
+
+  \item \verb|Theory.checkpoint|~\isa{thy} produces a safe
+  stepping stone in the linear development of \isa{thy}.  The next
+  update will result in two related, valid theories.
+
+  \item \verb|Theory.copy|~\isa{thy} produces a variant of \isa{thy} that holds a copy of the same data.  The result is not
+  related to the original; the original is unchanged.
+
+  \item \verb|theory_ref| represents a sliding reference to an
+  always valid theory; updates on the original are propagated
+  automatically.
+
+  \item \verb|Theory.deref|~\isa{thy{\isacharunderscore}ref} turns a \verb|theory_ref| into an \verb|theory| value.  As the referenced
+  theory evolves monotonically over time, later invocations of \verb|Theory.deref| may refer to a larger context.
+
+  \item \verb|Theory.check_thy|~\isa{thy} produces a \verb|theory_ref| from a valid \verb|theory| value.
+
+  \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isamarkupsubsection{Proof context \label{sec:context-proof}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+A proof context is a container for pure data with a back-reference
+  to the theory it belongs to.  The \isa{init} operation creates a
+  proof context from a given theory.  Modifications to draft theories
+  are propagated to the proof context as usual, but there is also an
+  explicit \isa{transfer} operation to force resynchronization
+  with more substantial updates to the underlying theory.  The actual
+  context data does not require any special bookkeeping, thanks to the
+  lack of destructive features.
+
+  Entities derived in a proof context need to record inherent logical
+  requirements explicitly, since there is no separate context
+  identification as for theories.  For example, hypotheses used in
+  primitive derivations (cf.\ \secref{sec:thms}) are recorded
+  separately within the sequent \isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymphi}}, just to make double
+  sure.  Results could still leak into an alien proof context due to
+  programming errors, but Isabelle/Isar includes some extra validity
+  checks in critical positions, notably at the end of a sub-proof.
+
+  Proof contexts may be manipulated arbitrarily, although the common
+  discipline is to follow block structure as a mental model: a given
+  context is extended consecutively, and results are exported back
+  into the original context.  Note that the Isar proof states model
+  block-structured reasoning explicitly, using a stack of proof
+  contexts internally.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+  \indexmltype{Proof.context}\verb|type Proof.context| \\
+  \indexml{ProofContext.init}\verb|ProofContext.init: theory -> Proof.context| \\
+  \indexml{ProofContext.theory\_of}\verb|ProofContext.theory_of: Proof.context -> theory| \\
+  \indexml{ProofContext.transfer}\verb|ProofContext.transfer: theory -> Proof.context -> Proof.context| \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item \verb|Proof.context| represents proof contexts.  Elements
+  of this type are essentially pure values, with a sliding reference
+  to the background theory.
+
+  \item \verb|ProofContext.init|~\isa{thy} produces a proof context
+  derived from \isa{thy}, initializing all data.
+
+  \item \verb|ProofContext.theory_of|~\isa{ctxt} selects the
+  background theory from \isa{ctxt}, dereferencing its internal
+  \verb|theory_ref|.
+
+  \item \verb|ProofContext.transfer|~\isa{thy\ ctxt} promotes the
+  background theory of \isa{ctxt} to the super theory \isa{thy}.
+
+  \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isamarkupsubsection{Generic contexts \label{sec:generic-context}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+A generic context is the disjoint sum of either a theory or proof
+  context.  Occasionally, this enables uniform treatment of generic
+  context data, typically extra-logical information.  Operations on
+  generic contexts include the usual injections, partial selections,
+  and combinators for lifting operations on either component of the
+  disjoint sum.
+
+  Moreover, there are total operations \isa{theory{\isacharunderscore}of} and \isa{proof{\isacharunderscore}of} to convert a generic context into either kind: a theory
+  can always be selected from the sum, while a proof context might
+  have to be constructed by an ad-hoc \isa{init} operation.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+  \indexmltype{Context.generic}\verb|type Context.generic| \\
+  \indexml{Context.theory\_of}\verb|Context.theory_of: Context.generic -> theory| \\
+  \indexml{Context.proof\_of}\verb|Context.proof_of: Context.generic -> Proof.context| \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item \verb|Context.generic| is the direct sum of \verb|theory| and \verb|Proof.context|, with the datatype
+  constructors \verb|Context.Theory| and \verb|Context.Proof|.
+
+  \item \verb|Context.theory_of|~\isa{context} always produces a
+  theory from the generic \isa{context}, using \verb|ProofContext.theory_of| as required.
+
+  \item \verb|Context.proof_of|~\isa{context} always produces a
+  proof context from the generic \isa{context}, using \verb|ProofContext.init| as required (note that this re-initializes the
+  context data with each invocation).
+
+  \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isamarkupsubsection{Context data \label{sec:context-data}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+The main purpose of theory and proof contexts is to manage arbitrary
+  data.  New data types can be declared incrementally at compile time.
+  There are separate declaration mechanisms for any of the three kinds
+  of contexts: theory, proof, generic.
+
+  \paragraph{Theory data} may refer to destructive entities, which are
+  maintained in direct correspondence to the linear evolution of
+  theory values, including explicit copies.\footnote{Most existing
+  instances of destructive theory data are merely historical relics
+  (e.g.\ the destructive theorem storage, and destructive hints for
+  the Simplifier and Classical rules).}  A theory data declaration
+  needs to implement the following SML signature:
+
+  \medskip
+  \begin{tabular}{ll}
+  \isa{{\isasymtype}\ T} & representing type \\
+  \isa{{\isasymval}\ empty{\isacharcolon}\ T} & empty default value \\
+  \isa{{\isasymval}\ copy{\isacharcolon}\ T\ {\isasymrightarrow}\ T} & refresh impure data \\
+  \isa{{\isasymval}\ extend{\isacharcolon}\ T\ {\isasymrightarrow}\ T} & re-initialize on import \\
+  \isa{{\isasymval}\ merge{\isacharcolon}\ T\ {\isasymtimes}\ T\ {\isasymrightarrow}\ T} & join on import \\
+  \end{tabular}
+  \medskip
+
+  \noindent The \isa{empty} value acts as initial default for
+  \emph{any} theory that does not declare actual data content; \isa{copy} maintains persistent integrity for impure data, it is just
+  the identity for pure values; \isa{extend} is acts like a
+  unitary version of \isa{merge}, both operations should also
+  include the functionality of \isa{copy} for impure data.
+
+  \paragraph{Proof context data} is purely functional.  A declaration
+  needs to implement the following SML signature:
+
+  \medskip
+  \begin{tabular}{ll}
+  \isa{{\isasymtype}\ T} & representing type \\
+  \isa{{\isasymval}\ init{\isacharcolon}\ theory\ {\isasymrightarrow}\ T} & produce initial value \\
+  \end{tabular}
+  \medskip
+
+  \noindent The \isa{init} operation is supposed to produce a pure
+  value from the given background theory.
+
+  \paragraph{Generic data} provides a hybrid interface for both theory
+  and proof data.  The declaration is essentially the same as for
+  (pure) theory data, without \isa{copy}.  The \isa{init}
+  operation for proof contexts merely selects the current data value
+  from the background theory.
+
+  \bigskip A data declaration of type \isa{T} results in the
+  following interface:
+
+  \medskip
+  \begin{tabular}{ll}
+  \isa{init{\isacharcolon}\ theory\ {\isasymrightarrow}\ T} \\
+  \isa{get{\isacharcolon}\ context\ {\isasymrightarrow}\ T} \\
+  \isa{put{\isacharcolon}\ T\ {\isasymrightarrow}\ context\ {\isasymrightarrow}\ context} \\
+  \isa{map{\isacharcolon}\ {\isacharparenleft}T\ {\isasymrightarrow}\ T{\isacharparenright}\ {\isasymrightarrow}\ context\ {\isasymrightarrow}\ context} \\
+  \end{tabular}
+  \medskip
+
+  \noindent Here \isa{init} is only applicable to impure theory
+  data to install a fresh copy persistently (destructive update on
+  uninitialized has no permanent effect).  The other operations provide
+  access for the particular kind of context (theory, proof, or generic
+  context).  Note that this is a safe interface: there is no other way
+  to access the corresponding data slot of a context.  By keeping
+  these operations private, a component may maintain abstract values
+  authentically, without other components interfering.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+  \indexmlfunctor{TheoryDataFun}\verb|functor TheoryDataFun| \\
+  \indexmlfunctor{ProofDataFun}\verb|functor ProofDataFun| \\
+  \indexmlfunctor{GenericDataFun}\verb|functor GenericDataFun| \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item \verb|TheoryDataFun|\isa{{\isacharparenleft}spec{\isacharparenright}} declares data for
+  type \verb|theory| according to the specification provided as
+  argument structure.  The resulting structure provides data init and
+  access operations as described above.
+
+  \item \verb|ProofDataFun|\isa{{\isacharparenleft}spec{\isacharparenright}} is analogous to
+  \verb|TheoryDataFun| for type \verb|Proof.context|.
+
+  \item \verb|GenericDataFun|\isa{{\isacharparenleft}spec{\isacharparenright}} is analogous to
+  \verb|TheoryDataFun| for type \verb|Context.generic|.
+
+  \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isamarkupsection{Names \label{sec:names}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+In principle, a name is just a string, but there are various
+  convention for encoding additional structure.  For example, ``\isa{Foo{\isachardot}bar{\isachardot}baz}'' is considered as a qualified name consisting of
+  three basic name components.  The individual constituents of a name
+  may have further substructure, e.g.\ the string
+  ``\verb,\,\verb,<alpha>,'' encodes as a single symbol.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Strings of symbols%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+A \emph{symbol} constitutes the smallest textual unit in Isabelle
+  --- raw characters are normally not encountered at all.  Isabelle
+  strings consist of a sequence of symbols, represented as a packed
+  string or a list of strings.  Each symbol is in itself a small
+  string, which has either one of the following forms:
+
+  \begin{enumerate}
+
+  \item a single ASCII character ``\isa{c}'', for example
+  ``\verb,a,'',
+
+  \item a regular symbol ``\verb,\,\verb,<,\isa{ident}\verb,>,'',
+  for example ``\verb,\,\verb,<alpha>,'',
+
+  \item a control symbol ``\verb,\,\verb,<^,\isa{ident}\verb,>,'',
+  for example ``\verb,\,\verb,<^bold>,'',
+
+  \item a raw symbol ``\verb,\,\verb,<^raw:,\isa{text}\verb,>,''
+  where \isa{text} constists of printable characters excluding
+  ``\verb,.,'' and ``\verb,>,'', for example
+  ``\verb,\,\verb,<^raw:$\sum_{i = 1}^n$>,'',
+
+  \item a numbered raw control symbol ``\verb,\,\verb,<^raw,\isa{n}\verb,>, where \isa{n} consists of digits, for example
+  ``\verb,\,\verb,<^raw42>,''.
+
+  \end{enumerate}
+
+  \noindent The \isa{ident} syntax for symbol names is \isa{letter\ {\isacharparenleft}letter\ {\isacharbar}\ digit{\isacharparenright}\isactrlsup {\isacharasterisk}}, where \isa{letter\ {\isacharequal}\ A{\isachardot}{\isachardot}Za{\isachardot}{\isachardot}z} and \isa{digit\ {\isacharequal}\ {\isadigit{0}}{\isachardot}{\isachardot}{\isadigit{9}}}.  There are infinitely many
+  regular symbols and control symbols, but a fixed collection of
+  standard symbols is treated specifically.  For example,
+  ``\verb,\,\verb,<alpha>,'' is classified as a letter, which means it
+  may occur within regular Isabelle identifiers.
+
+  Since the character set underlying Isabelle symbols is 7-bit ASCII
+  and 8-bit characters are passed through transparently, Isabelle may
+  also process Unicode/UCS data in UTF-8 encoding.  Unicode provides
+  its own collection of mathematical symbols, but there is no built-in
+  link to the standard collection of Isabelle.
+
+  \medskip Output of Isabelle symbols depends on the print mode
+  (\secref{print-mode}).  For example, the standard {\LaTeX} setup of
+  the Isabelle document preparation system would present
+  ``\verb,\,\verb,<alpha>,'' as \isa{{\isasymalpha}}, and
+  ``\verb,\,\verb,<^bold>,\verb,\,\verb,<alpha>,'' as \isa{\isactrlbold {\isasymalpha}}.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+  \indexmltype{Symbol.symbol}\verb|type Symbol.symbol| \\
+  \indexml{Symbol.explode}\verb|Symbol.explode: string -> Symbol.symbol list| \\
+  \indexml{Symbol.is\_letter}\verb|Symbol.is_letter: Symbol.symbol -> bool| \\
+  \indexml{Symbol.is\_digit}\verb|Symbol.is_digit: Symbol.symbol -> bool| \\
+  \indexml{Symbol.is\_quasi}\verb|Symbol.is_quasi: Symbol.symbol -> bool| \\
+  \indexml{Symbol.is\_blank}\verb|Symbol.is_blank: Symbol.symbol -> bool| \\
+  \end{mldecls}
+  \begin{mldecls}
+  \indexmltype{Symbol.sym}\verb|type Symbol.sym| \\
+  \indexml{Symbol.decode}\verb|Symbol.decode: Symbol.symbol -> Symbol.sym| \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item \verb|Symbol.symbol| represents individual Isabelle
+  symbols; this is an alias for \verb|string|.
+
+  \item \verb|Symbol.explode|~\isa{str} produces a symbol list
+  from the packed form.  This function supercedes \verb|String.explode| for virtually all purposes of manipulating text in
+  Isabelle!
+
+  \item \verb|Symbol.is_letter|, \verb|Symbol.is_digit|, \verb|Symbol.is_quasi|, \verb|Symbol.is_blank| classify standard
+  symbols according to fixed syntactic conventions of Isabelle, cf.\
+  \cite{isabelle-isar-ref}.
+
+  \item \verb|Symbol.sym| is a concrete datatype that represents
+  the different kinds of symbols explicitly, with constructors \verb|Symbol.Char|, \verb|Symbol.Sym|, \verb|Symbol.Ctrl|, \verb|Symbol.Raw|.
+
+  \item \verb|Symbol.decode| converts the string representation of a
+  symbol into the datatype version.
+
+  \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isamarkupsubsection{Basic names \label{sec:basic-names}%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+A \emph{basic name} essentially consists of a single Isabelle
+  identifier.  There are conventions to mark separate classes of basic
+  names, by attaching a suffix of underscores: one underscore means
+  \emph{internal name}, two underscores means \emph{Skolem name},
+  three underscores means \emph{internal Skolem name}.
+
+  For example, the basic name \isa{foo} has the internal version
+  \isa{foo{\isacharunderscore}}, with Skolem versions \isa{foo{\isacharunderscore}{\isacharunderscore}} and \isa{foo{\isacharunderscore}{\isacharunderscore}{\isacharunderscore}}, respectively.
+
+  These special versions provide copies of the basic name space, apart
+  from anything that normally appears in the user text.  For example,
+  system generated variables in Isar proof contexts are usually marked
+  as internal, which prevents mysterious name references like \isa{xaa} to appear in the text.
+
+  \medskip Manipulating binding scopes often requires on-the-fly
+  renamings.  A \emph{name context} contains a collection of already
+  used names.  The \isa{declare} operation adds names to the
+  context.
+
+  The \isa{invents} operation derives a number of fresh names from
+  a given starting point.  For example, the first three names derived
+  from \isa{a} are \isa{a}, \isa{b}, \isa{c}.
+
+  The \isa{variants} operation produces fresh names by
+  incrementing tentative names as base-26 numbers (with digits \isa{a{\isachardot}{\isachardot}z}) until all clashes are resolved.  For example, name \isa{foo} results in variants \isa{fooa}, \isa{foob}, \isa{fooc}, \dots, \isa{fooaa}, \isa{fooab} etc.; each renaming
+  step picks the next unused variant from this sequence.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+  \indexml{Name.internal}\verb|Name.internal: string -> string| \\
+  \indexml{Name.skolem}\verb|Name.skolem: string -> string| \\
+  \end{mldecls}
+  \begin{mldecls}
+  \indexmltype{Name.context}\verb|type Name.context| \\
+  \indexml{Name.context}\verb|Name.context: Name.context| \\
+  \indexml{Name.declare}\verb|Name.declare: string -> Name.context -> Name.context| \\
+  \indexml{Name.invents}\verb|Name.invents: Name.context -> string -> int -> string list| \\
+  \indexml{Name.variants}\verb|Name.variants: string list -> Name.context -> string list * Name.context| \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item \verb|Name.internal|~\isa{name} produces an internal name
+  by adding one underscore.
+
+  \item \verb|Name.skolem|~\isa{name} produces a Skolem name by
+  adding two underscores.
+
+  \item \verb|Name.context| represents the context of already used
+  names; the initial value is \verb|Name.context|.
+
+  \item \verb|Name.declare|~\isa{name} enters a used name into the
+  context.
+
+  \item \verb|Name.invents|~\isa{context\ name\ n} produces \isa{n} fresh names derived from \isa{name}.
+
+  \item \verb|Name.variants|~\isa{names\ context} produces fresh
+  variants of \isa{names}; the result is entered into the context.
+
+  \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isamarkupsubsection{Indexed names%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+An \emph{indexed name} (or \isa{indexname}) is a pair of a basic
+  name and a natural number.  This representation allows efficient
+  renaming by incrementing the second component only.  The canonical
+  way to rename two collections of indexnames apart from each other is
+  this: determine the maximum index \isa{maxidx} of the first
+  collection, then increment all indexes of the second collection by
+  \isa{maxidx\ {\isacharplus}\ {\isadigit{1}}}; the maximum index of an empty collection is
+  \isa{{\isacharminus}{\isadigit{1}}}.
+
+  Occasionally, basic names and indexed names are injected into the
+  same pair type: the (improper) indexname \isa{{\isacharparenleft}x{\isacharcomma}\ {\isacharminus}{\isadigit{1}}{\isacharparenright}} is used
+  to encode basic names.
+
+  \medskip Isabelle syntax observes the following rules for
+  representing an indexname \isa{{\isacharparenleft}x{\isacharcomma}\ i{\isacharparenright}} as a packed string:
+
+  \begin{itemize}
+
+  \item \isa{{\isacharquery}x} if \isa{x} does not end with a digit and \isa{i\ {\isacharequal}\ {\isadigit{0}}},
+
+  \item \isa{{\isacharquery}xi} if \isa{x} does not end with a digit,
+
+  \item \isa{{\isacharquery}x{\isachardot}i} otherwise.
+
+  \end{itemize}
+
+  Indexnames may acquire large index numbers over time.  Results are
+  normalized towards \isa{{\isadigit{0}}} at certain checkpoints, notably at
+  the end of a proof.  This works by producing variants of the
+  corresponding basic name components.  For example, the collection
+  \isa{{\isacharquery}x{\isadigit{1}}{\isacharcomma}\ {\isacharquery}x{\isadigit{7}}{\isacharcomma}\ {\isacharquery}x{\isadigit{4}}{\isadigit{2}}} becomes \isa{{\isacharquery}x{\isacharcomma}\ {\isacharquery}xa{\isacharcomma}\ {\isacharquery}xb}.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+  \indexmltype{indexname}\verb|type indexname| \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item \verb|indexname| represents indexed names.  This is an
+  abbreviation for \verb|string * int|.  The second component is
+  usually non-negative, except for situations where \isa{{\isacharparenleft}x{\isacharcomma}\ {\isacharminus}{\isadigit{1}}{\isacharparenright}}
+  is used to embed basic names into this type.
+
+  \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isamarkupsubsection{Qualified names and name spaces%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+A \emph{qualified name} consists of a non-empty sequence of basic
+  name components.  The packed representation uses a dot as separator,
+  as in ``\isa{A{\isachardot}b{\isachardot}c}''.  The last component is called \emph{base}
+  name, the remaining prefix \emph{qualifier} (which may be empty).
+  The idea of qualified names is to encode nested structures by
+  recording the access paths as qualifiers.  For example, an item
+  named ``\isa{A{\isachardot}b{\isachardot}c}'' may be understood as a local entity \isa{c}, within a local structure \isa{b}, within a global
+  structure \isa{A}.  Typically, name space hierarchies consist of
+  1--2 levels of qualification, but this need not be always so.
+
+  The empty name is commonly used as an indication of unnamed
+  entities, whenever this makes any sense.  The basic operations on
+  qualified names are smart enough to pass through such improper names
+  unchanged.
+
+  \medskip A \isa{naming} policy tells how to turn a name
+  specification into a fully qualified internal name (by the \isa{full} operation), and how fully qualified names may be accessed
+  externally.  For example, the default naming policy is to prefix an
+  implicit path: \isa{full\ x} produces \isa{path{\isachardot}x}, and the
+  standard accesses for \isa{path{\isachardot}x} include both \isa{x} and
+  \isa{path{\isachardot}x}.  Normally, the naming is implicit in the theory or
+  proof context; there are separate versions of the corresponding.
+
+  \medskip A \isa{name\ space} manages a collection of fully
+  internalized names, together with a mapping between external names
+  and internal names (in both directions).  The corresponding \isa{intern} and \isa{extern} operations are mostly used for
+  parsing and printing only!  The \isa{declare} operation augments
+  a name space according to the accesses determined by the naming
+  policy.
+
+  \medskip As a general principle, there is a separate name space for
+  each kind of formal entity, e.g.\ logical constant, type
+  constructor, type class, theorem.  It is usually clear from the
+  occurrence in concrete syntax (or from the scope) which kind of
+  entity a name refers to.  For example, the very same name \isa{c} may be used uniformly for a constant, type constructor, and
+  type class.
+
+  There are common schemes to name theorems systematically, according
+  to the name of the main logical entity involved, e.g.\ \isa{c{\isachardot}intro} for a canonical theorem related to constant \isa{c}.
+  This technique of mapping names from one space into another requires
+  some care in order to avoid conflicts.  In particular, theorem names
+  derived from a type constructor or type class are better suffixed in
+  addition to the usual qualification, e.g.\ \isa{c{\isacharunderscore}type{\isachardot}intro}
+  and \isa{c{\isacharunderscore}class{\isachardot}intro} for theorems related to type \isa{c}
+  and class \isa{c}, respectively.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isatagmlref
+%
+\begin{isamarkuptext}%
+\begin{mldecls}
+  \indexml{NameSpace.base}\verb|NameSpace.base: string -> string| \\
+  \indexml{NameSpace.qualifier}\verb|NameSpace.qualifier: string -> string| \\
+  \indexml{NameSpace.append}\verb|NameSpace.append: string -> string -> string| \\
+  \indexml{NameSpace.implode}\verb|NameSpace.implode: string list -> string| \\
+  \indexml{NameSpace.explode}\verb|NameSpace.explode: string -> string list| \\
+  \end{mldecls}
+  \begin{mldecls}
+  \indexmltype{NameSpace.naming}\verb|type NameSpace.naming| \\
+  \indexml{NameSpace.default\_naming}\verb|NameSpace.default_naming: NameSpace.naming| \\
+  \indexml{NameSpace.add\_path}\verb|NameSpace.add_path: string -> NameSpace.naming -> NameSpace.naming| \\
+  \indexml{NameSpace.full\_name}\verb|NameSpace.full_name: NameSpace.naming -> binding -> string| \\
+  \end{mldecls}
+  \begin{mldecls}
+  \indexmltype{NameSpace.T}\verb|type NameSpace.T| \\
+  \indexml{NameSpace.empty}\verb|NameSpace.empty: NameSpace.T| \\
+  \indexml{NameSpace.merge}\verb|NameSpace.merge: NameSpace.T * NameSpace.T -> NameSpace.T| \\
+  \indexml{NameSpace.declare}\verb|NameSpace.declare: NameSpace.naming -> binding -> NameSpace.T -> string * NameSpace.T| \\
+  \indexml{NameSpace.intern}\verb|NameSpace.intern: NameSpace.T -> string -> string| \\
+  \indexml{NameSpace.extern}\verb|NameSpace.extern: NameSpace.T -> string -> string| \\
+  \end{mldecls}
+
+  \begin{description}
+
+  \item \verb|NameSpace.base|~\isa{name} returns the base name of a
+  qualified name.
+
+  \item \verb|NameSpace.qualifier|~\isa{name} returns the qualifier
+  of a qualified name.
+
+  \item \verb|NameSpace.append|~\isa{name\isactrlisub {\isadigit{1}}\ name\isactrlisub {\isadigit{2}}}
+  appends two qualified names.
+
+  \item \verb|NameSpace.implode|~\isa{name} and \verb|NameSpace.explode|~\isa{names} convert between the packed string
+  representation and the explicit list form of qualified names.
+
+  \item \verb|NameSpace.naming| represents the abstract concept of
+  a naming policy.
+
+  \item \verb|NameSpace.default_naming| is the default naming policy.
+  In a theory context, this is usually augmented by a path prefix
+  consisting of the theory name.
+
+  \item \verb|NameSpace.add_path|~\isa{path\ naming} augments the
+  naming policy by extending its path component.
+
+  \item \verb|NameSpace.full_name|\isa{naming\ binding} turns a name
+  binding (usually a basic name) into the fully qualified
+  internal name, according to the given naming policy.
+
+  \item \verb|NameSpace.T| represents name spaces.
+
+  \item \verb|NameSpace.empty| and \verb|NameSpace.merge|~\isa{{\isacharparenleft}space\isactrlisub {\isadigit{1}}{\isacharcomma}\ space\isactrlisub {\isadigit{2}}{\isacharparenright}} are the canonical operations for
+  maintaining name spaces according to theory data management
+  (\secref{sec:context-data}).
+
+  \item \verb|NameSpace.declare|~\isa{naming\ bindings\ space} enters a
+  name binding as fully qualified internal name into the name space,
+  with external accesses determined by the naming policy.
+
+  \item \verb|NameSpace.intern|~\isa{space\ name} internalizes a
+  (partially qualified) external name.
+
+  This operation is mostly for parsing!  Note that fully qualified
+  names stemming from declarations are produced via \verb|NameSpace.full_name| and \verb|NameSpace.declare|
+  (or their derivatives for \verb|theory| and
+  \verb|Proof.context|).
+
+  \item \verb|NameSpace.extern|~\isa{space\ name} externalizes a
+  (fully qualified) internal name.
+
+  This operation is mostly for printing!  Note unqualified names are
+  produced via \verb|NameSpace.base|.
+
+  \end{description}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\endisatagmlref
+{\isafoldmlref}%
+%
+\isadelimmlref
+%
+\endisadelimmlref
+%
+\isadelimtheory
+%
+\endisadelimtheory
+%
+\isatagtheory
+\isacommand{end}\isamarkupfalse%
+%
+\endisatagtheory
+{\isafoldtheory}%
+%
+\isadelimtheory
+%
+\endisadelimtheory
+\isanewline
+\end{isabellebody}%
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "root"
+%%% End: