src/HOL/Cardinals/Cardinal_Order_Relation.thy
changeset 54794 e279c2ceb54c
parent 54581 1502a1f707d9
child 54980 7e0573a490ee
--- a/src/HOL/Cardinals/Cardinal_Order_Relation.thy	Tue Dec 17 15:44:10 2013 +0100
+++ b/src/HOL/Cardinals/Cardinal_Order_Relation.thy	Tue Dec 17 15:56:57 2013 +0100
@@ -1369,6 +1369,14 @@
 shows "|B| \<le>o |f -` B|"
 by (metis assms card_of_vimage subset_UNIV)
 
+lemma infinite_Pow:
+assumes "\<not> finite A"
+shows "\<not> finite (Pow A)"
+proof-
+  have "|A| \<le>o |Pow A|" by (metis card_of_Pow ordLess_imp_ordLeq)
+  thus ?thesis by (metis assms finite_Pow_iff)
+qed
+
 (* bounded powerset *)
 definition Bpow where
 "Bpow r A \<equiv> {X . X \<subseteq> A \<and> |X| \<le>o r}"