src/ZF/Cardinal.thy
changeset 13221 e29378f347e4
parent 12861 7ec4807b53cf
child 13244 7b37e218f298
--- a/src/ZF/Cardinal.thy	Tue Jun 18 18:45:07 2002 +0200
+++ b/src/ZF/Cardinal.thy	Wed Jun 19 09:03:34 2002 +0200
@@ -4,37 +4,1004 @@
     Copyright   1994  University of Cambridge
 
 Cardinals in Zermelo-Fraenkel Set Theory 
+
+This theory does NOT assume the Axiom of Choice
 *)
 
-Cardinal = OrderType + Fixedpt + Nat + Sum + 
-consts
-  Least            :: (i=>o) => i    (binder "LEAST " 10)
-  eqpoll, lepoll,
-          lesspoll :: [i,i] => o     (infixl 50)
-  cardinal         :: i=>i           ("|_|")
-  Finite, Card     :: i=>o
+theory Cardinal = OrderType + Fixedpt + Nat + Sum:
+
+(*** The following really belong in upair ***)
 
-defs
+lemma eq_imp_not_mem: "a=A ==> a ~: A"
+by (blast intro: elim: mem_irrefl)
+
+constdefs
 
   (*least ordinal operator*)
-  Least_def     "Least(P) == THE i. Ord(i) & P(i) & (ALL j. j<i --> ~P(j))"
+   Least    :: "(i=>o) => i"    (binder "LEAST " 10)
+     "Least(P) == THE i. Ord(i) & P(i) & (ALL j. j<i --> ~P(j))"
 
-  eqpoll_def    "A eqpoll B == EX f. f: bij(A,B)"
+  eqpoll   :: "[i,i] => o"     (infixl "eqpoll" 50)
+    "A eqpoll B == EX f. f: bij(A,B)"
 
-  lepoll_def    "A lepoll B == EX f. f: inj(A,B)"
+  lepoll   :: "[i,i] => o"     (infixl "lepoll" 50)
+    "A lepoll B == EX f. f: inj(A,B)"
 
-  lesspoll_def  "A lesspoll B == A lepoll B & ~(A eqpoll B)"
+  lesspoll :: "[i,i] => o"     (infixl "lesspoll" 50)
+    "A lesspoll B == A lepoll B & ~(A eqpoll B)"
 
-  Finite_def    "Finite(A) == EX n:nat. A eqpoll n"
+  cardinal :: "i=>i"           ("|_|")
+    "|A| == LEAST i. i eqpoll A"
 
-  cardinal_def  "|A| == LEAST i. i eqpoll A"
+  Finite   :: "i=>o"
+    "Finite(A) == EX n:nat. A eqpoll n"
 
-  Card_def      "Card(i) == (i = |i|)"
+  Card     :: "i=>o"
+    "Card(i) == (i = |i|)"
 
 syntax (xsymbols)
-  "op eqpoll"      :: [i,i] => o     (infixl "\\<approx>" 50)
-  "op lepoll"      :: [i,i] => o     (infixl "\\<lesssim>" 50)
-  "op lesspoll"    :: [i,i] => o     (infixl "\\<prec>" 50)
-  "LEAST "         :: [pttrn, o] => i        ("(3\\<mu>_./ _)" [0, 10] 10)
+  "eqpoll"      :: "[i,i] => o"       (infixl "\<approx>" 50)
+  "lepoll"      :: "[i,i] => o"       (infixl "\<lesssim>" 50)
+  "lesspoll"    :: "[i,i] => o"       (infixl "\<prec>" 50)
+  "LEAST "         :: "[pttrn, o] => i"  ("(3\<mu>_./ _)" [0, 10] 10)
+
+(*** The Schroeder-Bernstein Theorem -- see Davey & Priestly, page 106 ***)
+
+(** Lemma: Banach's Decomposition Theorem **)
+
+lemma decomp_bnd_mono: "bnd_mono(X, %W. X - g``(Y - f``W))"
+by (rule bnd_monoI, blast+)
+
+lemma Banach_last_equation:
+    "g: Y->X
+     ==> g``(Y - f`` lfp(X, %W. X - g``(Y - f``W))) =        
+	 X - lfp(X, %W. X - g``(Y - f``W))" 
+apply (rule_tac P = "%u. ?v = X-u" 
+       in decomp_bnd_mono [THEN lfp_unfold, THEN ssubst])
+apply (simp add: double_complement  fun_is_rel [THEN image_subset])
+done
+
+lemma decomposition:
+     "[| f: X->Y;  g: Y->X |] ==>    
+      EX XA XB YA YB. (XA Int XB = 0) & (XA Un XB = X) &     
+                      (YA Int YB = 0) & (YA Un YB = Y) &     
+                      f``XA=YA & g``YB=XB"
+apply (intro exI conjI)
+apply (rule_tac [6] Banach_last_equation)
+apply (rule_tac [5] refl)
+apply (assumption | 
+       rule  Diff_disjoint Diff_partition fun_is_rel image_subset lfp_subset)+
+done
+
+lemma schroeder_bernstein:
+    "[| f: inj(X,Y);  g: inj(Y,X) |] ==> EX h. h: bij(X,Y)"
+apply (insert decomposition [of f X Y g]) 
+apply (simp add: inj_is_fun)
+apply (blast intro!: restrict_bij bij_disjoint_Un intro: bij_converse_bij)
+(* The instantiation of exI to "restrict(f,XA) Un converse(restrict(g,YB))"
+   is forced by the context!! *)
+done
+
+
+(** Equipollence is an equivalence relation **)
+
+lemma bij_imp_eqpoll: "f: bij(A,B) ==> A \<approx> B"
+apply (unfold eqpoll_def)
+apply (erule exI)
+done
+
+(*A eqpoll A*)
+lemmas eqpoll_refl = id_bij [THEN bij_imp_eqpoll, standard, simp]
+
+lemma eqpoll_sym: "X \<approx> Y ==> Y \<approx> X"
+apply (unfold eqpoll_def)
+apply (blast intro: bij_converse_bij)
+done
+
+lemma eqpoll_trans: 
+    "[| X \<approx> Y;  Y \<approx> Z |] ==> X \<approx> Z"
+apply (unfold eqpoll_def)
+apply (blast intro: comp_bij)
+done
+
+(** Le-pollence is a partial ordering **)
+
+lemma subset_imp_lepoll: "X<=Y ==> X \<lesssim> Y"
+apply (unfold lepoll_def)
+apply (rule exI)
+apply (erule id_subset_inj)
+done
+
+lemmas lepoll_refl = subset_refl [THEN subset_imp_lepoll, standard, simp]
+
+lemmas le_imp_lepoll = le_imp_subset [THEN subset_imp_lepoll, standard]
+
+lemma eqpoll_imp_lepoll: "X \<approx> Y ==> X \<lesssim> Y"
+by (unfold eqpoll_def bij_def lepoll_def, blast)
+
+lemma lepoll_trans: "[| X \<lesssim> Y;  Y \<lesssim> Z |] ==> X \<lesssim> Z"
+apply (unfold lepoll_def)
+apply (blast intro: comp_inj)
+done
+
+(*Asymmetry law*)
+lemma eqpollI: "[| X \<lesssim> Y;  Y \<lesssim> X |] ==> X \<approx> Y"
+apply (unfold lepoll_def eqpoll_def)
+apply (elim exE)
+apply (rule schroeder_bernstein, assumption+)
+done
+
+lemma eqpollE:
+    "[| X \<approx> Y; [| X \<lesssim> Y; Y \<lesssim> X |] ==> P |] ==> P"
+by (blast intro: eqpoll_imp_lepoll eqpoll_sym) 
+
+lemma eqpoll_iff: "X \<approx> Y <-> X \<lesssim> Y & Y \<lesssim> X"
+by (blast intro: eqpollI elim!: eqpollE)
+
+lemma lepoll_0_is_0: "A \<lesssim> 0 ==> A = 0"
+apply (unfold lepoll_def inj_def)
+apply (blast dest: apply_type)
+done
+
+(*0 \<lesssim> Y*)
+lemmas empty_lepollI = empty_subsetI [THEN subset_imp_lepoll, standard]
+
+lemma lepoll_0_iff: "A \<lesssim> 0 <-> A=0"
+by (blast intro: lepoll_0_is_0 lepoll_refl)
+
+lemma Un_lepoll_Un: 
+    "[| A \<lesssim> B; C \<lesssim> D; B Int D = 0 |] ==> A Un C \<lesssim> B Un D"
+apply (unfold lepoll_def)
+apply (blast intro: inj_disjoint_Un)
+done
+
+(*A eqpoll 0 ==> A=0*)
+lemmas eqpoll_0_is_0 = eqpoll_imp_lepoll [THEN lepoll_0_is_0, standard]
+
+lemma eqpoll_0_iff: "A \<approx> 0 <-> A=0"
+by (blast intro: eqpoll_0_is_0 eqpoll_refl)
+
+lemma eqpoll_disjoint_Un: 
+    "[| A \<approx> B;  C \<approx> D;  A Int C = 0;  B Int D = 0 |]   
+     ==> A Un C \<approx> B Un D"
+apply (unfold eqpoll_def)
+apply (blast intro: bij_disjoint_Un)
+done
+
+
+(*** lesspoll: contributions by Krzysztof Grabczewski ***)
+
+lemma lesspoll_not_refl: "~ (i \<prec> i)"
+by (simp add: lesspoll_def) 
+
+lemma lesspoll_irrefl [elim!]: "i \<prec> i ==> P"
+by (simp add: lesspoll_def) 
+
+lemma lesspoll_imp_lepoll: "A \<prec> B ==> A \<lesssim> B"
+by (unfold lesspoll_def, blast)
+
+lemma lepoll_well_ord: "[| A \<lesssim> B; well_ord(B,r) |] ==> EX s. well_ord(A,s)"
+apply (unfold lepoll_def)
+apply (blast intro: well_ord_rvimage)
+done
+
+lemma lepoll_iff_leqpoll: "A \<lesssim> B <-> A \<prec> B | A \<approx> B"
+apply (unfold lesspoll_def)
+apply (blast intro!: eqpollI elim!: eqpollE)
+done
+
+lemma inj_not_surj_succ: 
+  "[| f : inj(A, succ(m)); f ~: surj(A, succ(m)) |] ==> EX f. f:inj(A,m)"
+apply (unfold inj_def surj_def) 
+apply (safe del: succE) 
+apply (erule swap, rule exI) 
+apply (rule_tac a = "lam z:A. if f`z=m then y else f`z" in CollectI)
+txt{*the typing condition*}
+ apply (best intro!: if_type [THEN lam_type] elim: apply_funtype [THEN succE])
+txt{*Proving it's injective*}
+apply simp
+apply blast 
+done
+
+(** Variations on transitivity **)
+
+lemma lesspoll_trans: 
+      "[| X \<prec> Y; Y \<prec> Z |] ==> X \<prec> Z"
+apply (unfold lesspoll_def)
+apply (blast elim!: eqpollE intro: eqpollI lepoll_trans)
+done
+
+lemma lesspoll_trans1: 
+      "[| X \<lesssim> Y; Y \<prec> Z |] ==> X \<prec> Z"
+apply (unfold lesspoll_def)
+apply (blast elim!: eqpollE intro: eqpollI lepoll_trans)
+done
+
+lemma lesspoll_trans2: 
+      "[| X \<prec> Y; Y \<lesssim> Z |] ==> X \<prec> Z"
+apply (unfold lesspoll_def)
+apply (blast elim!: eqpollE intro: eqpollI lepoll_trans)
+done
+
+
+(** LEAST -- the least number operator [from HOL/Univ.ML] **)
+
+lemma Least_equality: 
+    "[| P(i);  Ord(i);  !!x. x<i ==> ~P(x) |] ==> (LEAST x. P(x)) = i"
+apply (unfold Least_def) 
+apply (rule the_equality, blast)
+apply (elim conjE)
+apply (erule Ord_linear_lt, assumption, blast+)
+done
+
+lemma LeastI: "[| P(i);  Ord(i) |] ==> P(LEAST x. P(x))"
+apply (erule rev_mp)
+apply (erule_tac i=i in trans_induct) 
+apply (rule impI)
+apply (rule classical)
+apply (blast intro: Least_equality [THEN ssubst]  elim!: ltE)
+done
+
+(*Proof is almost identical to the one above!*)
+lemma Least_le: "[| P(i);  Ord(i) |] ==> (LEAST x. P(x)) le i"
+apply (erule rev_mp)
+apply (erule_tac i=i in trans_induct) 
+apply (rule impI)
+apply (rule classical)
+apply (subst Least_equality, assumption+)
+apply (erule_tac [2] le_refl)
+apply (blast elim: ltE intro: leI ltI lt_trans1)
+done
+
+(*LEAST really is the smallest*)
+lemma less_LeastE: "[| P(i);  i < (LEAST x. P(x)) |] ==> Q"
+apply (rule Least_le [THEN [2] lt_trans2, THEN lt_irrefl], assumption+)
+apply (simp add: lt_Ord) 
+done
+
+(*Easier to apply than LeastI: conclusion has only one occurrence of P*)
+lemma LeastI2:
+    "[| P(i);  Ord(i);  !!j. P(j) ==> Q(j) |] ==> Q(LEAST j. P(j))"
+by (blast intro: LeastI ) 
+
+(*If there is no such P then LEAST is vacuously 0*)
+lemma Least_0: 
+    "[| ~ (EX i. Ord(i) & P(i)) |] ==> (LEAST x. P(x)) = 0"
+apply (unfold Least_def)
+apply (rule the_0, blast)
+done
+
+lemma Ord_Least: "Ord(LEAST x. P(x))"
+apply (rule_tac P = "EX i. Ord(i) & P(i)" in case_split_thm)  
+    (*case_tac method not available yet; needs "inductive"*)
+apply safe
+apply (rule Least_le [THEN ltE])
+prefer 3 apply assumption+
+apply (erule Least_0 [THEN ssubst])
+apply (rule Ord_0)
+done
+
+
+(** Basic properties of cardinals **)
+
+(*Not needed for simplification, but helpful below*)
+lemma Least_cong:
+     "(!!y. P(y) <-> Q(y)) ==> (LEAST x. P(x)) = (LEAST x. Q(x))"
+by simp
+
+(*Need AC to get X \<lesssim> Y ==> |X| le |Y|;  see well_ord_lepoll_imp_Card_le
+  Converse also requires AC, but see well_ord_cardinal_eqE*)
+lemma cardinal_cong: "X \<approx> Y ==> |X| = |Y|"
+apply (unfold eqpoll_def cardinal_def)
+apply (rule Least_cong)
+apply (blast intro: comp_bij bij_converse_bij)
+done
+
+(*Under AC, the premise becomes trivial; one consequence is ||A|| = |A|*)
+lemma well_ord_cardinal_eqpoll: 
+    "well_ord(A,r) ==> |A| \<approx> A"
+apply (unfold cardinal_def)
+apply (rule LeastI)
+apply (erule_tac [2] Ord_ordertype)
+apply (erule ordermap_bij [THEN bij_converse_bij, THEN bij_imp_eqpoll])
+done
+
+(* Ord(A) ==> |A| \<approx> A *)
+lemmas Ord_cardinal_eqpoll = well_ord_Memrel [THEN well_ord_cardinal_eqpoll]
+
+lemma well_ord_cardinal_eqE:
+     "[| well_ord(X,r);  well_ord(Y,s);  |X| = |Y| |] ==> X \<approx> Y"
+apply (rule eqpoll_sym [THEN eqpoll_trans])
+apply (erule well_ord_cardinal_eqpoll)
+apply (simp (no_asm_simp) add: well_ord_cardinal_eqpoll)
+done
+
+lemma well_ord_cardinal_eqpoll_iff:
+     "[| well_ord(X,r);  well_ord(Y,s) |] ==> |X| = |Y| <-> X \<approx> Y"
+by (blast intro: cardinal_cong well_ord_cardinal_eqE)
+
+
+(** Observations from Kunen, page 28 **)
+
+lemma Ord_cardinal_le: "Ord(i) ==> |i| le i"
+apply (unfold cardinal_def)
+apply (erule eqpoll_refl [THEN Least_le])
+done
+
+lemma Card_cardinal_eq: "Card(K) ==> |K| = K"
+apply (unfold Card_def)
+apply (erule sym)
+done
+
+(* Could replace the  ~(j \<approx> i)  by  ~(i \<lesssim> j) *)
+lemma CardI: "[| Ord(i);  !!j. j<i ==> ~(j \<approx> i) |] ==> Card(i)"
+apply (unfold Card_def cardinal_def) 
+apply (subst Least_equality)
+apply (blast intro: eqpoll_refl )+
+done
+
+lemma Card_is_Ord: "Card(i) ==> Ord(i)"
+apply (unfold Card_def cardinal_def)
+apply (erule ssubst)
+apply (rule Ord_Least)
+done
+
+lemma Card_cardinal_le: "Card(K) ==> K le |K|"
+apply (simp (no_asm_simp) add: Card_is_Ord Card_cardinal_eq)
+done
+
+lemma Ord_cardinal [simp,intro!]: "Ord(|A|)"
+apply (unfold cardinal_def)
+apply (rule Ord_Least)
+done
+
+(*The cardinals are the initial ordinals*)
+lemma Card_iff_initial: "Card(K) <-> Ord(K) & (ALL j. j<K --> ~ j \<approx> K)"
+apply (safe intro!: CardI Card_is_Ord)
+ prefer 2 apply blast
+apply (unfold Card_def cardinal_def)
+apply (rule less_LeastE)
+apply (erule_tac [2] subst, assumption+)
+done
+
+lemma lt_Card_imp_lesspoll: "[| Card(a); i<a |] ==> i \<prec> a"
+apply (unfold lesspoll_def)
+apply (drule Card_iff_initial [THEN iffD1])
+apply (blast intro!: leI [THEN le_imp_lepoll])
+done
+
+lemma Card_0: "Card(0)"
+apply (rule Ord_0 [THEN CardI])
+apply (blast elim!: ltE)
+done
+
+lemma Card_Un: "[| Card(K);  Card(L) |] ==> Card(K Un L)"
+apply (rule Ord_linear_le [of K L])
+apply (simp_all add: subset_Un_iff [THEN iffD1]  Card_is_Ord le_imp_subset
+                     subset_Un_iff2 [THEN iffD1])
+done
+
+(*Infinite unions of cardinals?  See Devlin, Lemma 6.7, page 98*)
+
+lemma Card_cardinal: "Card(|A|)"
+apply (unfold cardinal_def)
+apply (rule_tac P =  "EX i. Ord (i) & i \<approx> A" in case_split_thm)
+ txt{*degenerate case*}
+ prefer 2 apply (erule Least_0 [THEN ssubst], rule Card_0)
+txt{*real case: A is isomorphic to some ordinal*}
+apply (rule Ord_Least [THEN CardI], safe)
+apply (rule less_LeastE)
+prefer 2 apply assumption
+apply (erule eqpoll_trans)
+apply (best intro: LeastI ) 
+done
+
+(*Kunen's Lemma 10.5*)
+lemma cardinal_eq_lemma: "[| |i| le j;  j le i |] ==> |j| = |i|"
+apply (rule eqpollI [THEN cardinal_cong])
+apply (erule le_imp_lepoll)
+apply (rule lepoll_trans)
+apply (erule_tac [2] le_imp_lepoll)
+apply (rule eqpoll_sym [THEN eqpoll_imp_lepoll])
+apply (rule Ord_cardinal_eqpoll)
+apply (elim ltE Ord_succD)
+done
+
+lemma cardinal_mono: "i le j ==> |i| le |j|"
+apply (rule_tac i = "|i|" and j = "|j|" in Ord_linear_le)
+apply (safe intro!: Ord_cardinal le_eqI)
+apply (rule cardinal_eq_lemma)
+prefer 2 apply assumption
+apply (erule le_trans)
+apply (erule ltE)
+apply (erule Ord_cardinal_le)
+done
+
+(*Since we have |succ(nat)| le |nat|, the converse of cardinal_mono fails!*)
+lemma cardinal_lt_imp_lt: "[| |i| < |j|;  Ord(i);  Ord(j) |] ==> i < j"
+apply (rule Ord_linear2 [of i j], assumption+)
+apply (erule lt_trans2 [THEN lt_irrefl])
+apply (erule cardinal_mono)
+done
+
+lemma Card_lt_imp_lt: "[| |i| < K;  Ord(i);  Card(K) |] ==> i < K"
+apply (simp (no_asm_simp) add: cardinal_lt_imp_lt Card_is_Ord Card_cardinal_eq)
+done
+
+lemma Card_lt_iff: "[| Ord(i);  Card(K) |] ==> (|i| < K) <-> (i < K)"
+by (blast intro: Card_lt_imp_lt Ord_cardinal_le [THEN lt_trans1])
+
+lemma Card_le_iff: "[| Ord(i);  Card(K) |] ==> (K le |i|) <-> (K le i)"
+apply (simp add: Card_lt_iff Card_is_Ord Ord_cardinal not_lt_iff_le [THEN iff_sym])
+done
+
+(*Can use AC or finiteness to discharge first premise*)
+lemma well_ord_lepoll_imp_Card_le:
+     "[| well_ord(B,r);  A \<lesssim> B |] ==> |A| le |B|"
+apply (rule_tac i = "|A|" and j = "|B|" in Ord_linear_le)
+apply (safe intro!: Ord_cardinal le_eqI)
+apply (rule eqpollI [THEN cardinal_cong], assumption)
+apply (rule lepoll_trans)
+apply (rule well_ord_cardinal_eqpoll [THEN eqpoll_sym, THEN eqpoll_imp_lepoll], assumption)
+apply (erule le_imp_lepoll [THEN lepoll_trans])
+apply (rule eqpoll_imp_lepoll)
+apply (unfold lepoll_def)
+apply (erule exE)
+apply (rule well_ord_cardinal_eqpoll)
+apply (erule well_ord_rvimage, assumption)
+done
+
+
+lemma lepoll_cardinal_le: "[| A \<lesssim> i; Ord(i) |] ==> |A| le i"
+apply (rule le_trans)
+apply (erule well_ord_Memrel [THEN well_ord_lepoll_imp_Card_le], assumption)
+apply (erule Ord_cardinal_le)
+done
+
+lemma lepoll_Ord_imp_eqpoll: "[| A \<lesssim> i; Ord(i) |] ==> |A| \<approx> A"
+by (blast intro: lepoll_cardinal_le well_ord_Memrel well_ord_cardinal_eqpoll dest!: lepoll_well_ord)
+
+lemma lesspoll_imp_eqpoll: 
+     "[| A \<prec> i; Ord(i) |] ==> |A| \<approx> A"
+apply (unfold lesspoll_def)
+apply (blast intro: lepoll_Ord_imp_eqpoll)
+done
+
+
+(*** The finite cardinals ***)
+
+lemma cons_lepoll_consD: 
+ "[| cons(u,A) \<lesssim> cons(v,B);  u~:A;  v~:B |] ==> A \<lesssim> B"
+apply (unfold lepoll_def inj_def, safe)
+apply (rule_tac x = "lam x:A. if f`x=v then f`u else f`x" in exI)
+apply (rule CollectI)
+(*Proving it's in the function space A->B*)
+apply (rule if_type [THEN lam_type])
+apply (blast dest: apply_funtype)
+apply (blast elim!: mem_irrefl dest: apply_funtype)
+(*Proving it's injective*)
+apply (simp (no_asm_simp))
+apply blast
+done
+
+lemma cons_eqpoll_consD: "[| cons(u,A) \<approx> cons(v,B);  u~:A;  v~:B |] ==> A \<approx> B"
+apply (simp add: eqpoll_iff)
+apply (blast intro: cons_lepoll_consD)
+done
+
+(*Lemma suggested by Mike Fourman*)
+lemma succ_lepoll_succD: "succ(m) \<lesssim> succ(n) ==> m \<lesssim> n"
+apply (unfold succ_def)
+apply (erule cons_lepoll_consD)
+apply (rule mem_not_refl)+
+done
+
+lemma nat_lepoll_imp_le [rule_format]:
+     "m:nat ==> ALL n: nat. m \<lesssim> n --> m le n"
+apply (erule nat_induct) (*induct_tac isn't available yet*)
+apply (blast intro!: nat_0_le)
+apply (rule ballI)
+apply (erule_tac n = "n" in natE)
+apply (simp (no_asm_simp) add: lepoll_def inj_def)
+apply (blast intro!: succ_leI dest!: succ_lepoll_succD)
+done
+
+lemma nat_eqpoll_iff: "[| m:nat; n: nat |] ==> m \<approx> n <-> m = n"
+apply (rule iffI)
+apply (blast intro: nat_lepoll_imp_le le_anti_sym elim!: eqpollE)
+apply (simp add: eqpoll_refl)
+done
+
+(*The object of all this work: every natural number is a (finite) cardinal*)
+lemma nat_into_Card: 
+    "n: nat ==> Card(n)"
+apply (unfold Card_def cardinal_def)
+apply (subst Least_equality)
+apply (rule eqpoll_refl)
+apply (erule nat_into_Ord) 
+apply (simp (no_asm_simp) add: lt_nat_in_nat [THEN nat_eqpoll_iff])
+apply (blast elim!: lt_irrefl)+
+done
+
+lemmas cardinal_0 = nat_0I [THEN nat_into_Card, THEN Card_cardinal_eq, iff]
+lemmas cardinal_1 = nat_1I [THEN nat_into_Card, THEN Card_cardinal_eq, iff]
+
+
+(*Part of Kunen's Lemma 10.6*)
+lemma succ_lepoll_natE: "[| succ(n) \<lesssim> n;  n:nat |] ==> P"
+by (rule nat_lepoll_imp_le [THEN lt_irrefl], auto)
+
+lemma n_lesspoll_nat: "n \<in> nat ==> n \<prec> nat"
+apply (unfold lesspoll_def)
+apply (fast elim!: Ord_nat [THEN [2] ltI [THEN leI, THEN le_imp_lepoll]]
+                   eqpoll_sym [THEN eqpoll_imp_lepoll] 
+    intro: Ord_nat [THEN [2] nat_succI [THEN ltI], THEN leI, 
+                 THEN le_imp_lepoll, THEN lepoll_trans, THEN succ_lepoll_natE])
+done
+
+lemma nat_lepoll_imp_ex_eqpoll_n: 
+     "[| n \<in> nat;  nat \<lesssim> X |] ==> \<exists>Y. Y \<subseteq> X & n \<approx> Y"
+apply (unfold lepoll_def eqpoll_def)
+apply (fast del: subsetI subsetCE
+            intro!: subset_SIs
+            dest!: Ord_nat [THEN [2] OrdmemD, THEN [2] restrict_inj]
+            elim!: restrict_bij 
+                   inj_is_fun [THEN fun_is_rel, THEN image_subset])
+done
+
+
+(** lepoll, \<prec> and natural numbers **)
+
+lemma lepoll_imp_lesspoll_succ: 
+     "[| A \<lesssim> m; m:nat |] ==> A \<prec> succ(m)"
+apply (unfold lesspoll_def)
+apply (rule conjI)
+apply (blast intro: subset_imp_lepoll [THEN [2] lepoll_trans])
+apply (rule notI)
+apply (drule eqpoll_sym [THEN eqpoll_imp_lepoll])
+apply (drule lepoll_trans, assumption)
+apply (erule succ_lepoll_natE, assumption)
+done
+
+lemma lesspoll_succ_imp_lepoll: 
+     "[| A \<prec> succ(m); m:nat |] ==> A \<lesssim> m"
+apply (unfold lesspoll_def lepoll_def eqpoll_def bij_def, clarify)
+apply (blast intro!: inj_not_surj_succ)
+done
+
+lemma lesspoll_succ_iff: "m:nat ==> A \<prec> succ(m) <-> A \<lesssim> m"
+by (blast intro!: lepoll_imp_lesspoll_succ lesspoll_succ_imp_lepoll)
+
+lemma lepoll_succ_disj: "[| A \<lesssim> succ(m);  m:nat |] ==> A \<lesssim> m | A \<approx> succ(m)"
+apply (rule disjCI)
+apply (rule lesspoll_succ_imp_lepoll)
+prefer 2 apply assumption
+apply (simp (no_asm_simp) add: lesspoll_def)
+done
+
+lemma lesspoll_cardinal_lt: "[| A \<prec> i; Ord(i) |] ==> |A| < i"
+apply (unfold lesspoll_def, clarify)
+apply (frule lepoll_cardinal_le, assumption)
+apply (blast intro: well_ord_Memrel well_ord_cardinal_eqpoll [THEN eqpoll_sym]
+             dest: lepoll_well_ord  elim!: leE)
+done
+
+
+(*** The first infinite cardinal: Omega, or nat ***)
+
+(*This implies Kunen's Lemma 10.6*)
+lemma lt_not_lepoll: "[| n<i;  n:nat |] ==> ~ i \<lesssim> n"
+apply (rule notI)
+apply (rule succ_lepoll_natE [of n])
+apply (rule lepoll_trans [of _ i])
+apply (erule ltE)
+apply (rule Ord_succ_subsetI [THEN subset_imp_lepoll], assumption+)
+done
+
+lemma Ord_nat_eqpoll_iff: "[| Ord(i);  n:nat |] ==> i \<approx> n <-> i=n"
+apply (rule iffI)
+ prefer 2 apply (simp add: eqpoll_refl)
+apply (rule Ord_linear_lt [of i n])
+apply (simp_all add: nat_into_Ord)
+apply (erule lt_nat_in_nat [THEN nat_eqpoll_iff, THEN iffD1], assumption+)
+apply (rule lt_not_lepoll [THEN notE], assumption+)
+apply (erule eqpoll_imp_lepoll)
+done
+
+lemma Card_nat: "Card(nat)"
+apply (unfold Card_def cardinal_def)
+apply (subst Least_equality)
+apply (rule eqpoll_refl) 
+apply (rule Ord_nat) 
+apply (erule ltE)
+apply (simp_all add: eqpoll_iff lt_not_lepoll ltI)
+done
+
+(*Allows showing that |i| is a limit cardinal*)
+lemma nat_le_cardinal: "nat le i ==> nat le |i|"
+apply (rule Card_nat [THEN Card_cardinal_eq, THEN subst])
+apply (erule cardinal_mono)
+done
+
+
+(*** Towards Cardinal Arithmetic ***)
+(** Congruence laws for successor, cardinal addition and multiplication **)
+
+(*Congruence law for  cons  under equipollence*)
+lemma cons_lepoll_cong: 
+    "[| A \<lesssim> B;  b ~: B |] ==> cons(a,A) \<lesssim> cons(b,B)"
+apply (unfold lepoll_def, safe)
+apply (rule_tac x = "lam y: cons (a,A) . if y=a then b else f`y" in exI)
+apply (rule_tac d = "%z. if z:B then converse (f) `z else a" in lam_injective)
+apply (safe elim!: consE') 
+   apply simp_all
+apply (blast intro: inj_is_fun [THEN apply_type])+ 
+done
+
+lemma cons_eqpoll_cong:
+     "[| A \<approx> B;  a ~: A;  b ~: B |] ==> cons(a,A) \<approx> cons(b,B)"
+by (simp add: eqpoll_iff cons_lepoll_cong)
+
+lemma cons_lepoll_cons_iff:
+     "[| a ~: A;  b ~: B |] ==> cons(a,A) \<lesssim> cons(b,B)  <->  A \<lesssim> B"
+by (blast intro: cons_lepoll_cong cons_lepoll_consD)
+
+lemma cons_eqpoll_cons_iff:
+     "[| a ~: A;  b ~: B |] ==> cons(a,A) \<approx> cons(b,B)  <->  A \<approx> B"
+by (blast intro: cons_eqpoll_cong cons_eqpoll_consD)
+
+lemma singleton_eqpoll_1: "{a} \<approx> 1"
+apply (unfold succ_def)
+apply (blast intro!: eqpoll_refl [THEN cons_eqpoll_cong])
+done
+
+lemma cardinal_singleton: "|{a}| = 1"
+apply (rule singleton_eqpoll_1 [THEN cardinal_cong, THEN trans])
+apply (simp (no_asm) add: nat_into_Card [THEN Card_cardinal_eq])
+done
+
+lemma not_0_is_lepoll_1: "A ~= 0 ==> 1 \<lesssim> A"
+apply (erule not_emptyE)
+apply (rule_tac a = "cons (x, A-{x}) " in subst)
+apply (rule_tac [2] a = "cons(0,0)" and P= "%y. y \<lesssim> cons (x, A-{x})" in subst)
+prefer 3 apply (blast intro: cons_lepoll_cong subset_imp_lepoll, auto)
+done
+
+(*Congruence law for  succ  under equipollence*)
+lemma succ_eqpoll_cong: "A \<approx> B ==> succ(A) \<approx> succ(B)"
+apply (unfold succ_def)
+apply (simp add: cons_eqpoll_cong mem_not_refl)
+done
+
+(*Congruence law for + under equipollence*)
+lemma sum_eqpoll_cong: "[| A \<approx> C;  B \<approx> D |] ==> A+B \<approx> C+D"
+apply (unfold eqpoll_def)
+apply (blast intro!: sum_bij)
+done
+
+(*Congruence law for * under equipollence*)
+lemma prod_eqpoll_cong: 
+    "[| A \<approx> C;  B \<approx> D |] ==> A*B \<approx> C*D"
+apply (unfold eqpoll_def)
+apply (blast intro!: prod_bij)
+done
+
+lemma inj_disjoint_eqpoll: 
+    "[| f: inj(A,B);  A Int B = 0 |] ==> A Un (B - range(f)) \<approx> B"
+apply (unfold eqpoll_def)
+apply (rule exI)
+apply (rule_tac c = "%x. if x:A then f`x else x" 
+            and d = "%y. if y: range (f) then converse (f) `y else y" 
+       in lam_bijective)
+apply (blast intro!: if_type inj_is_fun [THEN apply_type])
+apply (simp (no_asm_simp) add: inj_converse_fun [THEN apply_funtype])
+apply (safe elim!: UnE') 
+   apply (simp_all add: inj_is_fun [THEN apply_rangeI])
+apply (blast intro: inj_converse_fun [THEN apply_type])+ 
+done
+
+
+(*** Lemmas by Krzysztof Grabczewski.  New proofs using cons_lepoll_cons.
+     Could easily generalise from succ to cons. ***)
+
+(*If A has at most n+1 elements and a:A then A-{a} has at most n.*)
+lemma Diff_sing_lepoll: 
+      "[| a:A;  A \<lesssim> succ(n) |] ==> A - {a} \<lesssim> n"
+apply (unfold succ_def)
+apply (rule cons_lepoll_consD)
+apply (rule_tac [3] mem_not_refl)
+apply (erule cons_Diff [THEN ssubst], safe)
+done
+
+(*If A has at least n+1 elements then A-{a} has at least n.*)
+lemma lepoll_Diff_sing: 
+      "[| succ(n) \<lesssim> A |] ==> n \<lesssim> A - {a}"
+apply (unfold succ_def)
+apply (rule cons_lepoll_consD)
+apply (rule_tac [2] mem_not_refl)
+prefer 2 apply blast
+apply (blast intro: subset_imp_lepoll [THEN [2] lepoll_trans])
+done
+
+lemma Diff_sing_eqpoll: "[| a:A; A \<approx> succ(n) |] ==> A - {a} \<approx> n"
+by (blast intro!: eqpollI 
+          elim!: eqpollE 
+          intro: Diff_sing_lepoll lepoll_Diff_sing)
+
+lemma lepoll_1_is_sing: "[| A \<lesssim> 1; a:A |] ==> A = {a}"
+apply (frule Diff_sing_lepoll, assumption)
+apply (drule lepoll_0_is_0)
+apply (blast elim: equalityE)
+done
+
+lemma Un_lepoll_sum: "A Un B \<lesssim> A+B"
+apply (unfold lepoll_def)
+apply (rule_tac x = "lam x: A Un B. if x:A then Inl (x) else Inr (x) " in exI)
+apply (rule_tac d = "%z. snd (z) " in lam_injective)
+apply force 
+apply (simp add: Inl_def Inr_def)
+done
+
+lemma well_ord_Un:
+     "[| well_ord(X,R); well_ord(Y,S) |] ==> EX T. well_ord(X Un Y, T)"
+by (erule well_ord_radd [THEN Un_lepoll_sum [THEN lepoll_well_ord]], 
+    assumption)
+
+(*Krzysztof Grabczewski*)
+lemma disj_Un_eqpoll_sum: "A Int B = 0 ==> A Un B \<approx> A + B"
+apply (unfold eqpoll_def)
+apply (rule_tac x = "lam a:A Un B. if a:A then Inl (a) else Inr (a) " in exI)
+apply (rule_tac d = "%z. case (%x. x, %x. x, z) " in lam_bijective)
+apply auto
+done
+
+
+(*** Finite and infinite sets ***)
+
+lemma Finite_0: "Finite(0)"
+apply (unfold Finite_def)
+apply (blast intro!: eqpoll_refl nat_0I)
+done
+
+lemma lepoll_nat_imp_Finite: "[| A \<lesssim> n;  n:nat |] ==> Finite(A)"
+apply (unfold Finite_def)
+apply (erule rev_mp)
+apply (erule nat_induct)
+apply (blast dest!: lepoll_0_is_0 intro!: eqpoll_refl nat_0I)
+apply (blast dest!: lepoll_succ_disj)
+done
+
+lemma lesspoll_nat_is_Finite: 
+     "A \<prec> nat ==> Finite(A)"
+apply (unfold Finite_def)
+apply (blast dest: ltD lesspoll_cardinal_lt 
+                   lesspoll_imp_eqpoll [THEN eqpoll_sym])
+done
+
+lemma lepoll_Finite: 
+     "[| Y \<lesssim> X;  Finite(X) |] ==> Finite(Y)"
+apply (unfold Finite_def)
+apply (blast elim!: eqpollE
+             intro: lepoll_trans [THEN lepoll_nat_imp_Finite
+                                       [unfolded Finite_def]])
+done
+
+lemmas subset_Finite = subset_imp_lepoll [THEN lepoll_Finite, standard]
+
+lemmas Finite_Diff = Diff_subset [THEN subset_Finite, standard]
+
+lemma Finite_cons: "Finite(x) ==> Finite(cons(y,x))"
+apply (unfold Finite_def)
+apply (rule_tac P =  "y:x" in case_split_thm)
+apply (simp add: cons_absorb)
+apply (erule bexE)
+apply (rule bexI)
+apply (erule_tac [2] nat_succI)
+apply (simp (no_asm_simp) add: succ_def cons_eqpoll_cong mem_not_refl)
+done
+
+lemma Finite_succ: "Finite(x) ==> Finite(succ(x))"
+apply (unfold succ_def)
+apply (erule Finite_cons)
+done
+
+lemma nat_le_infinite_Ord: 
+      "[| Ord(i);  ~ Finite(i) |] ==> nat le i"
+apply (unfold Finite_def)
+apply (erule Ord_nat [THEN [2] Ord_linear2])
+prefer 2 apply assumption
+apply (blast intro!: eqpoll_refl elim!: ltE)
+done
+
+lemma Finite_imp_well_ord: 
+    "Finite(A) ==> EX r. well_ord(A,r)"
+apply (unfold Finite_def eqpoll_def)
+apply (blast intro: well_ord_rvimage bij_is_inj well_ord_Memrel nat_into_Ord)
+done
+
+
+(*Krzysztof Grabczewski's proof that the converse of a finite, well-ordered
+  set is well-ordered.  Proofs simplified by lcp. *)
+
+lemma nat_wf_on_converse_Memrel: "n:nat ==> wf[n](converse(Memrel(n)))"
+apply (erule nat_induct)
+apply (blast intro: wf_onI)
+apply (rule wf_onI)
+apply (simp add: wf_on_def wf_def)
+apply (rule_tac P =  "x:Z" in case_split_thm)
+ txt{*x:Z case*}
+ apply (drule_tac x = x in bspec, assumption)
+ apply (blast elim: mem_irrefl mem_asym)
+txt{*other case*} 
+apply (drule_tac x = "Z" in spec, blast) 
+done
+
+lemma nat_well_ord_converse_Memrel: "n:nat ==> well_ord(n,converse(Memrel(n)))"
+apply (frule Ord_nat [THEN Ord_in_Ord, THEN well_ord_Memrel])
+apply (unfold well_ord_def)
+apply (blast intro!: tot_ord_converse nat_wf_on_converse_Memrel)
+done
+
+lemma well_ord_converse:
+     "[|well_ord(A,r);      
+        well_ord(ordertype(A,r), converse(Memrel(ordertype(A, r)))) |]
+      ==> well_ord(A,converse(r))"
+apply (rule well_ord_Int_iff [THEN iffD1])
+apply (frule ordermap_bij [THEN bij_is_inj, THEN well_ord_rvimage], assumption)
+apply (simp add: rvimage_converse converse_Int converse_prod
+                 ordertype_ord_iso [THEN ord_iso_rvimage_eq])
+done
+
+lemma ordertype_eq_n:
+     "[| well_ord(A,r);  A \<approx> n;  n:nat |] ==> ordertype(A,r)=n"
+apply (rule Ord_ordertype [THEN Ord_nat_eqpoll_iff, THEN iffD1], assumption+)
+apply (rule eqpoll_trans)
+ prefer 2 apply assumption
+apply (unfold eqpoll_def)
+apply (blast intro!: ordermap_bij [THEN bij_converse_bij])
+done
+
+lemma Finite_well_ord_converse: 
+    "[| Finite(A);  well_ord(A,r) |] ==> well_ord(A,converse(r))"
+apply (unfold Finite_def)
+apply (rule well_ord_converse, assumption)
+apply (blast dest: ordertype_eq_n intro!: nat_well_ord_converse_Memrel)
+done
+
+lemma nat_into_Finite: "n:nat ==> Finite(n)"
+apply (unfold Finite_def)
+apply (fast intro!: eqpoll_refl)
+done
+
+ML
+{*
+val Least_def = thm "Least_def";
+val eqpoll_def = thm "eqpoll_def";
+val lepoll_def = thm "lepoll_def";
+val lesspoll_def = thm "lesspoll_def";
+val cardinal_def = thm "cardinal_def";
+val Finite_def = thm "Finite_def";
+val Card_def = thm "Card_def";
+val eq_imp_not_mem = thm "eq_imp_not_mem";
+val decomp_bnd_mono = thm "decomp_bnd_mono";
+val Banach_last_equation = thm "Banach_last_equation";
+val decomposition = thm "decomposition";
+val schroeder_bernstein = thm "schroeder_bernstein";
+val bij_imp_eqpoll = thm "bij_imp_eqpoll";
+val eqpoll_refl = thm "eqpoll_refl";
+val eqpoll_sym = thm "eqpoll_sym";
+val eqpoll_trans = thm "eqpoll_trans";
+val subset_imp_lepoll = thm "subset_imp_lepoll";
+val lepoll_refl = thm "lepoll_refl";
+val le_imp_lepoll = thm "le_imp_lepoll";
+val eqpoll_imp_lepoll = thm "eqpoll_imp_lepoll";
+val lepoll_trans = thm "lepoll_trans";
+val eqpollI = thm "eqpollI";
+val eqpollE = thm "eqpollE";
+val eqpoll_iff = thm "eqpoll_iff";
+val lepoll_0_is_0 = thm "lepoll_0_is_0";
+val empty_lepollI = thm "empty_lepollI";
+val lepoll_0_iff = thm "lepoll_0_iff";
+val Un_lepoll_Un = thm "Un_lepoll_Un";
+val eqpoll_0_is_0 = thm "eqpoll_0_is_0";
+val eqpoll_0_iff = thm "eqpoll_0_iff";
+val eqpoll_disjoint_Un = thm "eqpoll_disjoint_Un";
+val lesspoll_not_refl = thm "lesspoll_not_refl";
+val lesspoll_irrefl = thm "lesspoll_irrefl";
+val lesspoll_imp_lepoll = thm "lesspoll_imp_lepoll";
+val lepoll_well_ord = thm "lepoll_well_ord";
+val lepoll_iff_leqpoll = thm "lepoll_iff_leqpoll";
+val inj_not_surj_succ = thm "inj_not_surj_succ";
+val lesspoll_trans = thm "lesspoll_trans";
+val lesspoll_trans1 = thm "lesspoll_trans1";
+val lesspoll_trans2 = thm "lesspoll_trans2";
+val Least_equality = thm "Least_equality";
+val LeastI = thm "LeastI";
+val Least_le = thm "Least_le";
+val less_LeastE = thm "less_LeastE";
+val LeastI2 = thm "LeastI2";
+val Least_0 = thm "Least_0";
+val Ord_Least = thm "Ord_Least";
+val Least_cong = thm "Least_cong";
+val cardinal_cong = thm "cardinal_cong";
+val well_ord_cardinal_eqpoll = thm "well_ord_cardinal_eqpoll";
+val Ord_cardinal_eqpoll = thm "Ord_cardinal_eqpoll";
+val well_ord_cardinal_eqE = thm "well_ord_cardinal_eqE";
+val well_ord_cardinal_eqpoll_iff = thm "well_ord_cardinal_eqpoll_iff";
+val Ord_cardinal_le = thm "Ord_cardinal_le";
+val Card_cardinal_eq = thm "Card_cardinal_eq";
+val CardI = thm "CardI";
+val Card_is_Ord = thm "Card_is_Ord";
+val Card_cardinal_le = thm "Card_cardinal_le";
+val Ord_cardinal = thm "Ord_cardinal";
+val Card_iff_initial = thm "Card_iff_initial";
+val lt_Card_imp_lesspoll = thm "lt_Card_imp_lesspoll";
+val Card_0 = thm "Card_0";
+val Card_Un = thm "Card_Un";
+val Card_cardinal = thm "Card_cardinal";
+val cardinal_mono = thm "cardinal_mono";
+val cardinal_lt_imp_lt = thm "cardinal_lt_imp_lt";
+val Card_lt_imp_lt = thm "Card_lt_imp_lt";
+val Card_lt_iff = thm "Card_lt_iff";
+val Card_le_iff = thm "Card_le_iff";
+val well_ord_lepoll_imp_Card_le = thm "well_ord_lepoll_imp_Card_le";
+val lepoll_cardinal_le = thm "lepoll_cardinal_le";
+val lepoll_Ord_imp_eqpoll = thm "lepoll_Ord_imp_eqpoll";
+val lesspoll_imp_eqpoll = thm "lesspoll_imp_eqpoll";
+val cons_lepoll_consD = thm "cons_lepoll_consD";
+val cons_eqpoll_consD = thm "cons_eqpoll_consD";
+val succ_lepoll_succD = thm "succ_lepoll_succD";
+val nat_lepoll_imp_le = thm "nat_lepoll_imp_le";
+val nat_eqpoll_iff = thm "nat_eqpoll_iff";
+val nat_into_Card = thm "nat_into_Card";
+val cardinal_0 = thm "cardinal_0";
+val cardinal_1 = thm "cardinal_1";
+val succ_lepoll_natE = thm "succ_lepoll_natE";
+val n_lesspoll_nat = thm "n_lesspoll_nat";
+val nat_lepoll_imp_ex_eqpoll_n = thm "nat_lepoll_imp_ex_eqpoll_n";
+val lepoll_imp_lesspoll_succ = thm "lepoll_imp_lesspoll_succ";
+val lesspoll_succ_imp_lepoll = thm "lesspoll_succ_imp_lepoll";
+val lesspoll_succ_iff = thm "lesspoll_succ_iff";
+val lepoll_succ_disj = thm "lepoll_succ_disj";
+val lesspoll_cardinal_lt = thm "lesspoll_cardinal_lt";
+val lt_not_lepoll = thm "lt_not_lepoll";
+val Ord_nat_eqpoll_iff = thm "Ord_nat_eqpoll_iff";
+val Card_nat = thm "Card_nat";
+val nat_le_cardinal = thm "nat_le_cardinal";
+val cons_lepoll_cong = thm "cons_lepoll_cong";
+val cons_eqpoll_cong = thm "cons_eqpoll_cong";
+val cons_lepoll_cons_iff = thm "cons_lepoll_cons_iff";
+val cons_eqpoll_cons_iff = thm "cons_eqpoll_cons_iff";
+val singleton_eqpoll_1 = thm "singleton_eqpoll_1";
+val cardinal_singleton = thm "cardinal_singleton";
+val not_0_is_lepoll_1 = thm "not_0_is_lepoll_1";
+val succ_eqpoll_cong = thm "succ_eqpoll_cong";
+val sum_eqpoll_cong = thm "sum_eqpoll_cong";
+val prod_eqpoll_cong = thm "prod_eqpoll_cong";
+val inj_disjoint_eqpoll = thm "inj_disjoint_eqpoll";
+val Diff_sing_lepoll = thm "Diff_sing_lepoll";
+val lepoll_Diff_sing = thm "lepoll_Diff_sing";
+val Diff_sing_eqpoll = thm "Diff_sing_eqpoll";
+val lepoll_1_is_sing = thm "lepoll_1_is_sing";
+val Un_lepoll_sum = thm "Un_lepoll_sum";
+val well_ord_Un = thm "well_ord_Un";
+val disj_Un_eqpoll_sum = thm "disj_Un_eqpoll_sum";
+val Finite_0 = thm "Finite_0";
+val lepoll_nat_imp_Finite = thm "lepoll_nat_imp_Finite";
+val lesspoll_nat_is_Finite = thm "lesspoll_nat_is_Finite";
+val lepoll_Finite = thm "lepoll_Finite";
+val subset_Finite = thm "subset_Finite";
+val Finite_Diff = thm "Finite_Diff";
+val Finite_cons = thm "Finite_cons";
+val Finite_succ = thm "Finite_succ";
+val nat_le_infinite_Ord = thm "nat_le_infinite_Ord";
+val Finite_imp_well_ord = thm "Finite_imp_well_ord";
+val nat_wf_on_converse_Memrel = thm "nat_wf_on_converse_Memrel";
+val nat_well_ord_converse_Memrel = thm "nat_well_ord_converse_Memrel";
+val well_ord_converse = thm "well_ord_converse";
+val ordertype_eq_n = thm "ordertype_eq_n";
+val Finite_well_ord_converse = thm "Finite_well_ord_converse";
+val nat_into_Finite = thm "nat_into_Finite";
+*}
 
 end