src/HOL/ATP_Linkup.thy
changeset 35831 e31ec41a551b
parent 35824 b766aad9136d
parent 35830 d4c4f88f6432
child 35832 1dac16f00cd2
--- a/src/HOL/ATP_Linkup.thy	Thu Mar 18 13:57:00 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,127 +0,0 @@
-(*  Title:      HOL/ATP_Linkup.thy
-    Author:     Lawrence C Paulson
-    Author:     Jia Meng, NICTA
-    Author:     Fabian Immler, TUM
-*)
-
-header {* The Isabelle-ATP Linkup *}
-
-theory ATP_Linkup
-imports Plain Hilbert_Choice
-uses
-  "Tools/polyhash.ML"
-  "Tools/res_clause.ML"
-  ("Tools/res_axioms.ML")
-  ("Tools/res_hol_clause.ML")
-  ("Tools/res_reconstruct.ML")
-  ("Tools/res_atp.ML")
-  ("Tools/ATP_Manager/atp_manager.ML")
-  ("Tools/ATP_Manager/atp_wrapper.ML")
-  ("Tools/ATP_Manager/atp_minimal.ML")
-  "~~/src/Tools/Metis/metis.ML"
-  ("Tools/metis_tools.ML")
-begin
-
-definition COMBI :: "'a => 'a"
-  where "COMBI P == P"
-
-definition COMBK :: "'a => 'b => 'a"
-  where "COMBK P Q == P"
-
-definition COMBB :: "('b => 'c) => ('a => 'b) => 'a => 'c"
-  where "COMBB P Q R == P (Q R)"
-
-definition COMBC :: "('a => 'b => 'c) => 'b => 'a => 'c"
-  where "COMBC P Q R == P R Q"
-
-definition COMBS :: "('a => 'b => 'c) => ('a => 'b) => 'a => 'c"
-  where "COMBS P Q R == P R (Q R)"
-
-definition fequal :: "'a => 'a => bool"
-  where "fequal X Y == (X=Y)"
-
-lemma fequal_imp_equal: "fequal X Y ==> X=Y"
-  by (simp add: fequal_def)
-
-lemma equal_imp_fequal: "X=Y ==> fequal X Y"
-  by (simp add: fequal_def)
-
-text{*These two represent the equivalence between Boolean equality and iff.
-They can't be converted to clauses automatically, as the iff would be
-expanded...*}
-
-lemma iff_positive: "P | Q | P=Q"
-by blast
-
-lemma iff_negative: "~P | ~Q | P=Q"
-by blast
-
-text{*Theorems for translation to combinators*}
-
-lemma abs_S: "(%x. (f x) (g x)) == COMBS f g"
-apply (rule eq_reflection)
-apply (rule ext) 
-apply (simp add: COMBS_def) 
-done
-
-lemma abs_I: "(%x. x) == COMBI"
-apply (rule eq_reflection)
-apply (rule ext) 
-apply (simp add: COMBI_def) 
-done
-
-lemma abs_K: "(%x. y) == COMBK y"
-apply (rule eq_reflection)
-apply (rule ext) 
-apply (simp add: COMBK_def) 
-done
-
-lemma abs_B: "(%x. a (g x)) == COMBB a g"
-apply (rule eq_reflection)
-apply (rule ext) 
-apply (simp add: COMBB_def) 
-done
-
-lemma abs_C: "(%x. (f x) b) == COMBC f b"
-apply (rule eq_reflection)
-apply (rule ext) 
-apply (simp add: COMBC_def) 
-done
-
-
-subsection {* Setup of external ATPs *}
-
-use "Tools/res_axioms.ML" setup Res_Axioms.setup
-use "Tools/res_hol_clause.ML"
-use "Tools/res_reconstruct.ML" setup Res_Reconstruct.setup
-use "Tools/res_atp.ML"
-
-use "Tools/ATP_Manager/atp_wrapper.ML" setup ATP_Wrapper.setup
-use "Tools/ATP_Manager/atp_manager.ML"
-use "Tools/ATP_Manager/atp_minimal.ML"
-
-text {* basic provers *}
-setup {* ATP_Manager.add_prover ATP_Wrapper.spass *}
-setup {* ATP_Manager.add_prover ATP_Wrapper.vampire *}
-setup {* ATP_Manager.add_prover ATP_Wrapper.eprover *}
-
-text {* provers with stuctured output *}
-setup {* ATP_Manager.add_prover ATP_Wrapper.vampire_full *}
-setup {* ATP_Manager.add_prover ATP_Wrapper.eprover_full *}
-
-text {* on some problems better results *}
-setup {* ATP_Manager.add_prover ATP_Wrapper.spass_no_tc *}
-
-text {* remote provers via SystemOnTPTP *}
-setup {* ATP_Manager.add_prover ATP_Wrapper.remote_vampire *}
-setup {* ATP_Manager.add_prover ATP_Wrapper.remote_spass *}
-setup {* ATP_Manager.add_prover ATP_Wrapper.remote_eprover *}
-  
-
-
-subsection {* The Metis prover *}
-
-use "Tools/metis_tools.ML"
-setup MetisTools.setup
-
-end