src/ZF/Univ.thy
changeset 13163 e320a52ff711
parent 9395 1c9851cdfe9f
child 13175 81082cfa5618
--- a/src/ZF/Univ.thy	Fri May 17 16:54:25 2002 +0200
+++ b/src/ZF/Univ.thy	Sat May 18 20:08:17 2002 +0200
@@ -11,30 +11,885 @@
   But Ind_Syntax.univ refers to the constant "Univ.univ"
 *)
 
-Univ = Epsilon + Sum + Finite + mono +
+theory Univ = Epsilon + Sum + Finite + mono:
 
-consts
-    Vfrom       :: [i,i]=>i
-    Vset        :: i=>i
-    Vrec        :: [i, [i,i]=>i] =>i
-    Vrecursor   :: [[i,i]=>i, i] =>i
-    univ        :: i=>i
+constdefs
+  Vfrom       :: "[i,i]=>i"
+    "Vfrom(A,i) == transrec(i, %x f. A Un (UN y:x. Pow(f`y)))"
 
+syntax   Vset        :: "i=>i"
 translations
     "Vset(x)"   ==      "Vfrom(0,x)"
 
 
-defs
-    Vfrom_def   "Vfrom(A,i) == transrec(i, %x f. A Un (UN y:x. Pow(f`y)))"
+constdefs
+  Vrec        :: "[i, [i,i]=>i] =>i"
+    "Vrec(a,H) == transrec(rank(a), %x g. lam z: Vset(succ(x)).
+ 		 	   H(z, lam w:Vset(x). g`rank(w)`w)) ` a"
+
+  Vrecursor   :: "[[i,i]=>i, i] =>i"
+    "Vrecursor(H,a) == transrec(rank(a), %x g. lam z: Vset(succ(x)).
+				H(lam w:Vset(x). g`rank(w)`w, z)) ` a"
+
+  univ        :: "i=>i"
+    "univ(A) == Vfrom(A,nat)"
+
+
+text{*NOT SUITABLE FOR REWRITING -- RECURSIVE!*}
+lemma Vfrom: "Vfrom(A,i) = A Un (UN j:i. Pow(Vfrom(A,j)))"
+apply (subst Vfrom_def [THEN def_transrec])
+apply simp
+done
+
+subsubsection{* Monotonicity *}
+
+lemma Vfrom_mono [rule_format]:
+     "A<=B ==> ALL j. i<=j --> Vfrom(A,i) <= Vfrom(B,j)"
+apply (rule_tac a=i in eps_induct)
+apply (rule impI [THEN allI])
+apply (subst Vfrom)
+apply (subst Vfrom)
+apply (erule Un_mono)
+apply (erule UN_mono, blast) 
+done
+
+
+subsubsection{* A fundamental equality: Vfrom does not require ordinals! *}
+
+lemma Vfrom_rank_subset1: "Vfrom(A,x) <= Vfrom(A,rank(x))"
+apply (rule_tac a=x in eps_induct)
+apply (subst Vfrom)
+apply (subst Vfrom)
+apply (blast intro!: rank_lt [THEN ltD])
+done
+
+lemma Vfrom_rank_subset2: "Vfrom(A,rank(x)) <= Vfrom(A,x)"
+apply (rule_tac a=x in eps_induct)
+apply (subst Vfrom)
+apply (subst Vfrom)
+apply (rule subset_refl [THEN Un_mono])
+apply (rule UN_least)
+txt{*expand rank(x1) = (UN y:x1. succ(rank(y))) in assumptions*}
+apply (erule rank [THEN equalityD1, THEN subsetD, THEN UN_E])
+apply (rule subset_trans)
+apply (erule_tac [2] UN_upper)
+apply (rule subset_refl [THEN Vfrom_mono, THEN subset_trans, THEN Pow_mono])
+apply (erule ltI [THEN le_imp_subset])
+apply (rule Ord_rank [THEN Ord_succ])
+apply (erule bspec, assumption)
+done
+
+lemma Vfrom_rank_eq: "Vfrom(A,rank(x)) = Vfrom(A,x)"
+apply (rule equalityI)
+apply (rule Vfrom_rank_subset2)
+apply (rule Vfrom_rank_subset1)
+done
+
+
+subsection{* Basic closure properties *}
+
+lemma zero_in_Vfrom: "y:x ==> 0 : Vfrom(A,x)"
+by (subst Vfrom, blast)
+
+lemma i_subset_Vfrom: "i <= Vfrom(A,i)"
+apply (rule_tac a=i in eps_induct)
+apply (subst Vfrom, blast)
+done
+
+lemma A_subset_Vfrom: "A <= Vfrom(A,i)"
+apply (subst Vfrom)
+apply (rule Un_upper1)
+done
+
+lemmas A_into_Vfrom = A_subset_Vfrom [THEN subsetD]
+
+lemma subset_mem_Vfrom: "a <= Vfrom(A,i) ==> a: Vfrom(A,succ(i))"
+by (subst Vfrom, blast)
+
+subsubsection{* Finite sets and ordered pairs *}
+
+lemma singleton_in_Vfrom: "a: Vfrom(A,i) ==> {a} : Vfrom(A,succ(i))"
+by (rule subset_mem_Vfrom, safe)
+
+lemma doubleton_in_Vfrom:
+     "[| a: Vfrom(A,i);  b: Vfrom(A,i) |] ==> {a,b} : Vfrom(A,succ(i))"
+by (rule subset_mem_Vfrom, safe)
+
+lemma Pair_in_Vfrom:
+    "[| a: Vfrom(A,i);  b: Vfrom(A,i) |] ==> <a,b> : Vfrom(A,succ(succ(i)))"
+apply (unfold Pair_def)
+apply (blast intro: doubleton_in_Vfrom) 
+done
+
+lemma succ_in_Vfrom: "a <= Vfrom(A,i) ==> succ(a) : Vfrom(A,succ(succ(i)))"
+apply (intro subset_mem_Vfrom succ_subsetI, assumption)
+apply (erule subset_trans) 
+apply (rule Vfrom_mono [OF subset_refl subset_succI]) 
+done
+
+subsection{* 0, successor and limit equations fof Vfrom *}
+
+lemma Vfrom_0: "Vfrom(A,0) = A"
+by (subst Vfrom, blast)
+
+lemma Vfrom_succ_lemma: "Ord(i) ==> Vfrom(A,succ(i)) = A Un Pow(Vfrom(A,i))"
+apply (rule Vfrom [THEN trans])
+apply (rule equalityI [THEN subst_context, 
+                       OF _ succI1 [THEN RepFunI, THEN Union_upper]])
+apply (rule UN_least)
+apply (rule subset_refl [THEN Vfrom_mono, THEN Pow_mono])
+apply (erule ltI [THEN le_imp_subset])
+apply (erule Ord_succ)
+done
+
+lemma Vfrom_succ: "Vfrom(A,succ(i)) = A Un Pow(Vfrom(A,i))"
+apply (rule_tac x1 = "succ (i)" in Vfrom_rank_eq [THEN subst])
+apply (rule_tac x1 = "i" in Vfrom_rank_eq [THEN subst])
+apply (subst rank_succ)
+apply (rule Ord_rank [THEN Vfrom_succ_lemma])
+done
+
+(*The premise distinguishes this from Vfrom(A,0);  allowing X=0 forces
+  the conclusion to be Vfrom(A,Union(X)) = A Un (UN y:X. Vfrom(A,y)) *)
+lemma Vfrom_Union: "y:X ==> Vfrom(A,Union(X)) = (UN y:X. Vfrom(A,y))"
+apply (subst Vfrom)
+apply (rule equalityI)
+txt{*first inclusion*}
+apply (rule Un_least)
+apply (rule A_subset_Vfrom [THEN subset_trans])
+apply (rule UN_upper, assumption)
+apply (rule UN_least)
+apply (erule UnionE)
+apply (rule subset_trans)
+apply (erule_tac [2] UN_upper,
+       subst Vfrom, erule subset_trans [OF UN_upper Un_upper2])
+txt{*opposite inclusion*}
+apply (rule UN_least)
+apply (subst Vfrom, blast)
+done
+
+subsection{* Vfrom applied to Limit ordinals *}
+
+(*NB. limit ordinals are non-empty:
+      Vfrom(A,0) = A = A Un (UN y:0. Vfrom(A,y)) *)
+lemma Limit_Vfrom_eq:
+    "Limit(i) ==> Vfrom(A,i) = (UN y:i. Vfrom(A,y))"
+apply (rule Limit_has_0 [THEN ltD, THEN Vfrom_Union, THEN subst], assumption)
+apply (simp add: Limit_Union_eq) 
+done
+
+lemma Limit_VfromI: "[| a: Vfrom(A,j);  Limit(i);  j<i |] ==> a : Vfrom(A,i)"
+apply (rule Limit_Vfrom_eq [THEN equalityD2, THEN subsetD], assumption)
+apply (blast intro: ltD) 
+done
+
+lemma Limit_VfromE:
+    "[| a: Vfrom(A,i);  ~R ==> Limit(i);
+        !!x. [| x<i;  a: Vfrom(A,x) |] ==> R
+     |] ==> R"
+apply (rule classical)
+apply (rule Limit_Vfrom_eq [THEN equalityD1, THEN subsetD, THEN UN_E])
+prefer 2 apply assumption
+apply blast 
+apply (blast intro: ltI  Limit_is_Ord)
+done
+
+lemmas zero_in_VLimit = Limit_has_0 [THEN ltD, THEN zero_in_Vfrom, standard]
+
+lemma singleton_in_VLimit:
+    "[| a: Vfrom(A,i);  Limit(i) |] ==> {a} : Vfrom(A,i)"
+apply (erule Limit_VfromE, assumption)
+apply (erule singleton_in_Vfrom [THEN Limit_VfromI], assumption)
+apply (blast intro: Limit_has_succ) 
+done
+
+lemmas Vfrom_UnI1 = 
+    Un_upper1 [THEN subset_refl [THEN Vfrom_mono, THEN subsetD], standard]
+lemmas Vfrom_UnI2 = 
+    Un_upper2 [THEN subset_refl [THEN Vfrom_mono, THEN subsetD], standard]
+
+text{*Hard work is finding a single j:i such that {a,b}<=Vfrom(A,j)*}
+lemma doubleton_in_VLimit:
+    "[| a: Vfrom(A,i);  b: Vfrom(A,i);  Limit(i) |] ==> {a,b} : Vfrom(A,i)"
+apply (erule Limit_VfromE, assumption)
+apply (erule Limit_VfromE, assumption)
+apply (blast intro:  Limit_VfromI [OF doubleton_in_Vfrom]
+                     Vfrom_UnI1 Vfrom_UnI2 Limit_has_succ Un_least_lt)
+done
+
+lemma Pair_in_VLimit:
+    "[| a: Vfrom(A,i);  b: Vfrom(A,i);  Limit(i) |] ==> <a,b> : Vfrom(A,i)"
+txt{*Infer that a, b occur at ordinals x,xa < i.*}
+apply (erule Limit_VfromE, assumption)
+apply (erule Limit_VfromE, assumption)
+txt{*Infer that succ(succ(x Un xa)) < i *}
+apply (blast intro:  Limit_VfromI [OF Pair_in_Vfrom]
+                     Vfrom_UnI1 Vfrom_UnI2 Limit_has_succ Un_least_lt)
+done
+
+lemma product_VLimit: "Limit(i) ==> Vfrom(A,i) * Vfrom(A,i) <= Vfrom(A,i)"
+by (blast intro: Pair_in_VLimit)
+
+lemmas Sigma_subset_VLimit =
+     subset_trans [OF Sigma_mono product_VLimit]
+
+lemmas nat_subset_VLimit =
+     subset_trans [OF nat_le_Limit [THEN le_imp_subset] i_subset_Vfrom]
+
+lemma nat_into_VLimit: "[| n: nat;  Limit(i) |] ==> n : Vfrom(A,i)"
+by (blast intro: nat_subset_VLimit [THEN subsetD])
+
+subsubsection{* Closure under disjoint union *}
+
+lemmas zero_in_VLimit = Limit_has_0 [THEN ltD, THEN zero_in_Vfrom, standard]
+
+lemma one_in_VLimit: "Limit(i) ==> 1 : Vfrom(A,i)"
+by (blast intro: nat_into_VLimit)
+
+lemma Inl_in_VLimit:
+    "[| a: Vfrom(A,i); Limit(i) |] ==> Inl(a) : Vfrom(A,i)"
+apply (unfold Inl_def)
+apply (blast intro: zero_in_VLimit Pair_in_VLimit)
+done
+
+lemma Inr_in_VLimit:
+    "[| b: Vfrom(A,i); Limit(i) |] ==> Inr(b) : Vfrom(A,i)"
+apply (unfold Inr_def)
+apply (blast intro: one_in_VLimit Pair_in_VLimit)
+done
+
+lemma sum_VLimit: "Limit(i) ==> Vfrom(C,i)+Vfrom(C,i) <= Vfrom(C,i)"
+by (blast intro!: Inl_in_VLimit Inr_in_VLimit)
+
+lemmas sum_subset_VLimit = subset_trans [OF sum_mono sum_VLimit]
+
+
+
+subsection{* Properties assuming Transset(A) *}
+
+lemma Transset_Vfrom: "Transset(A) ==> Transset(Vfrom(A,i))"
+apply (rule_tac a=i in eps_induct)
+apply (subst Vfrom)
+apply (blast intro!: Transset_Union_family Transset_Un Transset_Pow)
+done
+
+lemma Transset_Vfrom_succ:
+     "Transset(A) ==> Vfrom(A, succ(i)) = Pow(Vfrom(A,i))"
+apply (rule Vfrom_succ [THEN trans])
+apply (rule equalityI [OF _ Un_upper2])
+apply (rule Un_least [OF _ subset_refl])
+apply (rule A_subset_Vfrom [THEN subset_trans])
+apply (erule Transset_Vfrom [THEN Transset_iff_Pow [THEN iffD1]])
+done
+
+lemma Transset_Pair_subset: "[| <a,b> <= C; Transset(C) |] ==> a: C & b: C"
+by (unfold Pair_def Transset_def, blast)
+
+lemma Transset_Pair_subset_VLimit:
+     "[| <a,b> <= Vfrom(A,i);  Transset(A);  Limit(i) |]
+      ==> <a,b> : Vfrom(A,i)"
+apply (erule Transset_Pair_subset [THEN conjE])
+apply (erule Transset_Vfrom)
+apply (blast intro: Pair_in_VLimit)
+done
+
+lemma Union_in_Vfrom:
+     "[| X: Vfrom(A,j);  Transset(A) |] ==> Union(X) : Vfrom(A, succ(j))"
+apply (drule Transset_Vfrom)
+apply (rule subset_mem_Vfrom)
+apply (unfold Transset_def, blast)
+done
+
+lemma Union_in_VLimit:
+     "[| X: Vfrom(A,i);  Limit(i);  Transset(A) |] ==> Union(X) : Vfrom(A,i)"
+apply (rule Limit_VfromE, assumption+)
+apply (blast intro: Limit_has_succ Limit_VfromI Union_in_Vfrom)
+done
+
+
+(*** Closure under product/sum applied to elements -- thus Vfrom(A,i)
+     is a model of simple type theory provided A is a transitive set
+     and i is a limit ordinal
+***)
+
+text{*General theorem for membership in Vfrom(A,i) when i is a limit ordinal*}
+lemma in_VLimit:
+  "[| a: Vfrom(A,i);  b: Vfrom(A,i);  Limit(i);
+      !!x y j. [| j<i; 1:j; x: Vfrom(A,j); y: Vfrom(A,j) |]
+               ==> EX k. h(x,y): Vfrom(A,k) & k<i |]
+   ==> h(a,b) : Vfrom(A,i)"
+txt{*Infer that a, b occur at ordinals x,xa < i.*}
+apply (erule Limit_VfromE, assumption)
+apply (erule Limit_VfromE, assumption, atomize)
+apply (drule_tac x=a in spec) 
+apply (drule_tac x=b in spec) 
+apply (drule_tac x="x Un xa Un 2" in spec) 
+txt{*FIXME: can do better using simprule about Un and <*}
+apply (simp add: Vfrom_UnI2 [THEN Vfrom_UnI1] Vfrom_UnI1 [THEN Vfrom_UnI1]) 
+apply (blast intro: Limit_has_0 Limit_has_succ Un_least_lt Limit_VfromI)
+done
+
+subsubsection{* products *}
+
+lemma prod_in_Vfrom:
+    "[| a: Vfrom(A,j);  b: Vfrom(A,j);  Transset(A) |]
+     ==> a*b : Vfrom(A, succ(succ(succ(j))))"
+apply (drule Transset_Vfrom)
+apply (rule subset_mem_Vfrom)
+apply (unfold Transset_def)
+apply (blast intro: Pair_in_Vfrom)
+done
+
+lemma prod_in_VLimit:
+  "[| a: Vfrom(A,i);  b: Vfrom(A,i);  Limit(i);  Transset(A) |]
+   ==> a*b : Vfrom(A,i)"
+apply (erule in_VLimit, assumption+)
+apply (blast intro: prod_in_Vfrom Limit_has_succ)
+done
+
+subsubsection{* Disjoint sums, aka Quine ordered pairs *}
+
+lemma sum_in_Vfrom:
+    "[| a: Vfrom(A,j);  b: Vfrom(A,j);  Transset(A);  1:j |]
+     ==> a+b : Vfrom(A, succ(succ(succ(j))))"
+apply (unfold sum_def)
+apply (drule Transset_Vfrom)
+apply (rule subset_mem_Vfrom)
+apply (unfold Transset_def)
+apply (blast intro: zero_in_Vfrom Pair_in_Vfrom i_subset_Vfrom [THEN subsetD])
+done
+
+lemma sum_in_VLimit:
+  "[| a: Vfrom(A,i);  b: Vfrom(A,i);  Limit(i);  Transset(A) |]
+   ==> a+b : Vfrom(A,i)"
+apply (erule in_VLimit, assumption+)
+apply (blast intro: sum_in_Vfrom Limit_has_succ)
+done
+
+subsubsection{* function space! *}
+
+lemma fun_in_Vfrom:
+    "[| a: Vfrom(A,j);  b: Vfrom(A,j);  Transset(A) |] ==>
+          a->b : Vfrom(A, succ(succ(succ(succ(j)))))"
+apply (unfold Pi_def)
+apply (drule Transset_Vfrom)
+apply (rule subset_mem_Vfrom)
+apply (rule Collect_subset [THEN subset_trans])
+apply (subst Vfrom)
+apply (rule subset_trans [THEN subset_trans])
+apply (rule_tac [3] Un_upper2)
+apply (rule_tac [2] succI1 [THEN UN_upper])
+apply (rule Pow_mono)
+apply (unfold Transset_def)
+apply (blast intro: Pair_in_Vfrom)
+done
+
+lemma fun_in_VLimit:
+  "[| a: Vfrom(A,i);  b: Vfrom(A,i);  Limit(i);  Transset(A) |]
+   ==> a->b : Vfrom(A,i)"
+apply (erule in_VLimit, assumption+)
+apply (blast intro: fun_in_Vfrom Limit_has_succ)
+done
+
+lemma Pow_in_Vfrom:
+    "[| a: Vfrom(A,j);  Transset(A) |] ==> Pow(a) : Vfrom(A, succ(succ(j)))"
+apply (drule Transset_Vfrom)
+apply (rule subset_mem_Vfrom)
+apply (unfold Transset_def)
+apply (subst Vfrom, blast)
+done
+
+lemma Pow_in_VLimit:
+     "[| a: Vfrom(A,i);  Limit(i);  Transset(A) |] ==> Pow(a) : Vfrom(A,i)"
+by (blast elim: Limit_VfromE intro: Limit_has_succ Pow_in_Vfrom Limit_VfromI)
+
+
+subsection{* The set Vset(i) *}
+
+lemma Vset: "Vset(i) = (UN j:i. Pow(Vset(j)))"
+by (subst Vfrom, blast)
+
+lemmas Vset_succ = Transset_0 [THEN Transset_Vfrom_succ, standard]
+lemmas Transset_Vset = Transset_0 [THEN Transset_Vfrom, standard]
+
+subsubsection{* Characterisation of the elements of Vset(i) *}
+
+lemma VsetD [rule_format]: "Ord(i) ==> ALL b. b : Vset(i) --> rank(b) < i"
+apply (erule trans_induct)
+apply (subst Vset, safe)
+apply (subst rank)
+apply (blast intro: ltI UN_succ_least_lt) 
+done
+
+lemma VsetI_lemma [rule_format]:
+     "Ord(i) ==> ALL b. rank(b) : i --> b : Vset(i)"
+apply (erule trans_induct)
+apply (rule allI)
+apply (subst Vset)
+apply (blast intro!: rank_lt [THEN ltD])
+done
+
+lemma VsetI: "rank(x)<i ==> x : Vset(i)"
+by (blast intro: VsetI_lemma elim: ltE)
+
+text{*Merely a lemma for the next result*}
+lemma Vset_Ord_rank_iff: "Ord(i) ==> b : Vset(i) <-> rank(b) < i"
+by (blast intro: VsetD VsetI)
+
+lemma Vset_rank_iff [simp]: "b : Vset(a) <-> rank(b) < rank(a)"
+apply (rule Vfrom_rank_eq [THEN subst])
+apply (rule Ord_rank [THEN Vset_Ord_rank_iff])
+done
+
+text{*This is rank(rank(a)) = rank(a) *}
+declare Ord_rank [THEN rank_of_Ord, simp]
+
+lemma rank_Vset: "Ord(i) ==> rank(Vset(i)) = i"
+apply (subst rank)
+apply (rule equalityI, safe)
+apply (blast intro: VsetD [THEN ltD]) 
+apply (blast intro: VsetD [THEN ltD] Ord_trans) 
+apply (blast intro: i_subset_Vfrom [THEN subsetD]
+                    Ord_in_Ord [THEN rank_of_Ord, THEN ssubst])
+done
+
+subsubsection{* Lemmas for reasoning about sets in terms of their elements' ranks *}
 
-    Vrec_def
-        "Vrec(a,H) == transrec(rank(a), %x g. lam z: Vset(succ(x)).      
-                             H(z, lam w:Vset(x). g`rank(w)`w)) ` a"
+lemma arg_subset_Vset_rank: "a <= Vset(rank(a))"
+apply (rule subsetI)
+apply (erule rank_lt [THEN VsetI])
+done
+
+lemma Int_Vset_subset:
+    "[| !!i. Ord(i) ==> a Int Vset(i) <= b |] ==> a <= b"
+apply (rule subset_trans) 
+apply (rule Int_greatest [OF subset_refl arg_subset_Vset_rank])
+apply (blast intro: Ord_rank) 
+done
+
+subsubsection{* Set up an environment for simplification *}
+
+lemma rank_Inl: "rank(a) < rank(Inl(a))"
+apply (unfold Inl_def)
+apply (rule rank_pair2)
+done
+
+lemma rank_Inr: "rank(a) < rank(Inr(a))"
+apply (unfold Inr_def)
+apply (rule rank_pair2)
+done
+
+lemmas rank_rls = rank_Inl rank_Inr rank_pair1 rank_pair2
+
+subsubsection{* Recursion over Vset levels! *}
+
+text{*NOT SUITABLE FOR REWRITING: recursive!*}
+lemma Vrec: "Vrec(a,H) = H(a, lam x:Vset(rank(a)). Vrec(x,H))"
+apply (unfold Vrec_def)
+apply (subst transrec)
+apply simp
+apply (rule refl [THEN lam_cong, THEN subst_context], simp)
+done
+
+text{*This form avoids giant explosions in proofs.  NOTE USE OF == *}
+lemma def_Vrec:
+    "[| !!x. h(x)==Vrec(x,H) |] ==>
+     h(a) = H(a, lam x: Vset(rank(a)). h(x))"
+apply simp 
+apply (rule Vrec)
+done
+
+text{*NOT SUITABLE FOR REWRITING: recursive!*}
+lemma Vrecursor:
+     "Vrecursor(H,a) = H(lam x:Vset(rank(a)). Vrecursor(H,x),  a)"
+apply (unfold Vrecursor_def)
+apply (subst transrec, simp)
+apply (rule refl [THEN lam_cong, THEN subst_context], simp)
+done
+
+text{*This form avoids giant explosions in proofs.  NOTE USE OF == *}
+lemma def_Vrecursor:
+     "h == Vrecursor(H) ==> h(a) = H(lam x: Vset(rank(a)). h(x),  a)"
+apply simp
+apply (rule Vrecursor)
+done
+
+
+subsection{* univ(A) *}
+
+lemma univ_mono: "A<=B ==> univ(A) <= univ(B)"
+apply (unfold univ_def)
+apply (erule Vfrom_mono)
+apply (rule subset_refl)
+done
+
+lemma Transset_univ: "Transset(A) ==> Transset(univ(A))"
+apply (unfold univ_def)
+apply (erule Transset_Vfrom)
+done
+
+subsubsection{* univ(A) as a limit *}
+
+lemma univ_eq_UN: "univ(A) = (UN i:nat. Vfrom(A,i))"
+apply (unfold univ_def)
+apply (rule Limit_nat [THEN Limit_Vfrom_eq])
+done
+
+lemma subset_univ_eq_Int: "c <= univ(A) ==> c = (UN i:nat. c Int Vfrom(A,i))"
+apply (rule subset_UN_iff_eq [THEN iffD1])
+apply (erule univ_eq_UN [THEN subst])
+done
+
+lemma univ_Int_Vfrom_subset:
+    "[| a <= univ(X);
+        !!i. i:nat ==> a Int Vfrom(X,i) <= b |]
+     ==> a <= b"
+apply (subst subset_univ_eq_Int, assumption)
+apply (rule UN_least, simp) 
+done
+
+lemma univ_Int_Vfrom_eq:
+    "[| a <= univ(X);   b <= univ(X);
+        !!i. i:nat ==> a Int Vfrom(X,i) = b Int Vfrom(X,i)
+     |] ==> a = b"
+apply (rule equalityI)
+apply (rule univ_Int_Vfrom_subset, assumption)
+apply (blast elim: equalityCE) 
+apply (rule univ_Int_Vfrom_subset, assumption)
+apply (blast elim: equalityCE) 
+done
+
+subsubsection{* Closure properties *}
+
+lemma zero_in_univ: "0 : univ(A)"
+apply (unfold univ_def)
+apply (rule nat_0I [THEN zero_in_Vfrom])
+done
+
+lemma A_subset_univ: "A <= univ(A)"
+apply (unfold univ_def)
+apply (rule A_subset_Vfrom)
+done
+
+lemmas A_into_univ = A_subset_univ [THEN subsetD, standard]
+
+subsubsection{* Closure under unordered and ordered pairs *}
+
+lemma singleton_in_univ: "a: univ(A) ==> {a} : univ(A)"
+apply (unfold univ_def)
+apply (blast intro: singleton_in_VLimit Limit_nat)
+done
+
+lemma doubleton_in_univ:
+    "[| a: univ(A);  b: univ(A) |] ==> {a,b} : univ(A)"
+apply (unfold univ_def)
+apply (blast intro: doubleton_in_VLimit Limit_nat)
+done
+
+lemma Pair_in_univ:
+    "[| a: univ(A);  b: univ(A) |] ==> <a,b> : univ(A)"
+apply (unfold univ_def)
+apply (blast intro: Pair_in_VLimit Limit_nat)
+done
+
+lemma Union_in_univ:
+     "[| X: univ(A);  Transset(A) |] ==> Union(X) : univ(A)"
+apply (unfold univ_def)
+apply (blast intro: Union_in_VLimit Limit_nat)
+done
+
+lemma product_univ: "univ(A)*univ(A) <= univ(A)"
+apply (unfold univ_def)
+apply (rule Limit_nat [THEN product_VLimit])
+done
+
+
+subsubsection{* The natural numbers *}
+
+lemma nat_subset_univ: "nat <= univ(A)"
+apply (unfold univ_def)
+apply (rule i_subset_Vfrom)
+done
+
+text{* n:nat ==> n:univ(A) *}
+lemmas nat_into_univ = nat_subset_univ [THEN subsetD, standard]
+
+subsubsection{* instances for 1 and 2 *}
+
+lemma one_in_univ: "1 : univ(A)"
+apply (unfold univ_def)
+apply (rule Limit_nat [THEN one_in_VLimit])
+done
+
+text{*unused!*}
+lemma two_in_univ: "2 : univ(A)"
+by (blast intro: nat_into_univ)
+
+lemma bool_subset_univ: "bool <= univ(A)"
+apply (unfold bool_def)
+apply (blast intro!: zero_in_univ one_in_univ)
+done
+
+lemmas bool_into_univ = bool_subset_univ [THEN subsetD, standard]
+
+
+subsubsection{* Closure under disjoint union *}
+
+lemma Inl_in_univ: "a: univ(A) ==> Inl(a) : univ(A)"
+apply (unfold univ_def)
+apply (erule Inl_in_VLimit [OF _ Limit_nat])
+done
+
+lemma Inr_in_univ: "b: univ(A) ==> Inr(b) : univ(A)"
+apply (unfold univ_def)
+apply (erule Inr_in_VLimit [OF _ Limit_nat])
+done
+
+lemma sum_univ: "univ(C)+univ(C) <= univ(C)"
+apply (unfold univ_def)
+apply (rule Limit_nat [THEN sum_VLimit])
+done
+
+lemmas sum_subset_univ = subset_trans [OF sum_mono sum_univ]
+
+
+subsubsection{* Closure under binary union -- use Un_least *}
+subsubsection{* Closure under Collect -- use  (Collect_subset RS subset_trans)  *}
+subsubsection{* Closure under RepFun -- use   RepFun_subset  *}
+
+
+subsection{* Finite Branching Closure Properties *}
+
+subsubsection{* Closure under finite powerset *}
+
+lemma Fin_Vfrom_lemma:
+     "[| b: Fin(Vfrom(A,i));  Limit(i) |] ==> EX j. b <= Vfrom(A,j) & j<i"
+apply (erule Fin_induct)
+apply (blast dest!: Limit_has_0, safe)
+apply (erule Limit_VfromE, assumption)
+apply (blast intro!: Un_least_lt intro: Vfrom_UnI1 Vfrom_UnI2)
+done
 
-    Vrecursor_def
-        "Vrecursor(H,a) == transrec(rank(a), %x g. lam z: Vset(succ(x)).      
-                                    H(lam w:Vset(x). g`rank(w)`w, z)) ` a"
+lemma Fin_VLimit: "Limit(i) ==> Fin(Vfrom(A,i)) <= Vfrom(A,i)"
+apply (rule subsetI)
+apply (drule Fin_Vfrom_lemma, safe)
+apply (rule Vfrom [THEN ssubst])
+apply (blast dest!: ltD)
+done
+
+lemmas Fin_subset_VLimit = subset_trans [OF Fin_mono Fin_VLimit]
+
+lemma Fin_univ: "Fin(univ(A)) <= univ(A)"
+apply (unfold univ_def)
+apply (rule Limit_nat [THEN Fin_VLimit])
+done
+
+subsubsection{* Closure under finite powers (functions from a fixed natural number) *}
+
+lemma nat_fun_VLimit:
+     "[| n: nat;  Limit(i) |] ==> n -> Vfrom(A,i) <= Vfrom(A,i)"
+apply (erule nat_fun_subset_Fin [THEN subset_trans])
+apply (blast del: subsetI
+    intro: subset_refl Fin_subset_VLimit Sigma_subset_VLimit nat_subset_VLimit)
+done
+
+lemmas nat_fun_subset_VLimit = subset_trans [OF Pi_mono nat_fun_VLimit]
+
+lemma nat_fun_univ: "n: nat ==> n -> univ(A) <= univ(A)"
+apply (unfold univ_def)
+apply (erule nat_fun_VLimit [OF _ Limit_nat])
+done
+
+
+subsubsection{* Closure under finite function space *}
+
+text{*General but seldom-used version; normally the domain is fixed*}
+lemma FiniteFun_VLimit1:
+     "Limit(i) ==> Vfrom(A,i) -||> Vfrom(A,i) <= Vfrom(A,i)"
+apply (rule FiniteFun.dom_subset [THEN subset_trans])
+apply (blast del: subsetI
+             intro: Fin_subset_VLimit Sigma_subset_VLimit subset_refl)
+done
+
+lemma FiniteFun_univ1: "univ(A) -||> univ(A) <= univ(A)"
+apply (unfold univ_def)
+apply (rule Limit_nat [THEN FiniteFun_VLimit1])
+done
+
+text{*Version for a fixed domain*}
+lemma FiniteFun_VLimit:
+     "[| W <= Vfrom(A,i); Limit(i) |] ==> W -||> Vfrom(A,i) <= Vfrom(A,i)"
+apply (rule subset_trans) 
+apply (erule FiniteFun_mono [OF _ subset_refl])
+apply (erule FiniteFun_VLimit1)
+done
+
+lemma FiniteFun_univ:
+    "W <= univ(A) ==> W -||> univ(A) <= univ(A)"
+apply (unfold univ_def)
+apply (erule FiniteFun_VLimit [OF _ Limit_nat])
+done
+
+lemma FiniteFun_in_univ:
+     "[| f: W -||> univ(A);  W <= univ(A) |] ==> f : univ(A)"
+by (erule FiniteFun_univ [THEN subsetD], assumption)
+
+text{*Remove <= from the rule above*}
+lemmas FiniteFun_in_univ' = FiniteFun_in_univ [OF _ subsetI]
+
+
+subsection{** For QUniv.  Properties of Vfrom analogous to the "take-lemma" **}
+
+subsection{* Intersecting a*b with Vfrom... *}
+
+text{*This version says a, b exist one level down, in the smaller set Vfrom(X,i)*}
+lemma doubleton_in_Vfrom_D:
+     "[| {a,b} : Vfrom(X,succ(i));  Transset(X) |]
+      ==> a: Vfrom(X,i)  &  b: Vfrom(X,i)"
+by (drule Transset_Vfrom_succ [THEN equalityD1, THEN subsetD, THEN PowD], 
+    assumption, fast)
+
+text{*This weaker version says a, b exist at the same level*}
+lemmas Vfrom_doubleton_D = Transset_Vfrom [THEN Transset_doubleton_D, standard]
+
+(** Using only the weaker theorem would prove <a,b> : Vfrom(X,i)
+      implies a, b : Vfrom(X,i), which is useless for induction.
+    Using only the stronger theorem would prove <a,b> : Vfrom(X,succ(succ(i)))
+      implies a, b : Vfrom(X,i), leaving the succ(i) case untreated.
+    The combination gives a reduction by precisely one level, which is
+      most convenient for proofs.
+**)
+
+lemma Pair_in_Vfrom_D:
+    "[| <a,b> : Vfrom(X,succ(i));  Transset(X) |]
+     ==> a: Vfrom(X,i)  &  b: Vfrom(X,i)"
+apply (unfold Pair_def)
+apply (blast dest!: doubleton_in_Vfrom_D Vfrom_doubleton_D)
+done
+
+lemma product_Int_Vfrom_subset:
+     "Transset(X) ==>
+      (a*b) Int Vfrom(X, succ(i)) <= (a Int Vfrom(X,i)) * (b Int Vfrom(X,i))"
+by (blast dest!: Pair_in_Vfrom_D)
+
+
+ML
+{*
 
-    univ_def    "univ(A) == Vfrom(A,nat)"
+val Vfrom = thm "Vfrom";
+val Vfrom_mono = thm "Vfrom_mono";
+val Vfrom_rank_subset1 = thm "Vfrom_rank_subset1";
+val Vfrom_rank_subset2 = thm "Vfrom_rank_subset2";
+val Vfrom_rank_eq = thm "Vfrom_rank_eq";
+val zero_in_Vfrom = thm "zero_in_Vfrom";
+val i_subset_Vfrom = thm "i_subset_Vfrom";
+val A_subset_Vfrom = thm "A_subset_Vfrom";
+val subset_mem_Vfrom = thm "subset_mem_Vfrom";
+val singleton_in_Vfrom = thm "singleton_in_Vfrom";
+val doubleton_in_Vfrom = thm "doubleton_in_Vfrom";
+val Pair_in_Vfrom = thm "Pair_in_Vfrom";
+val succ_in_Vfrom = thm "succ_in_Vfrom";
+val Vfrom_0 = thm "Vfrom_0";
+val Vfrom_succ_lemma = thm "Vfrom_succ_lemma";
+val Vfrom_succ = thm "Vfrom_succ";
+val Vfrom_Union = thm "Vfrom_Union";
+val Limit_Vfrom_eq = thm "Limit_Vfrom_eq";
+val Limit_VfromI = thm "Limit_VfromI";
+val Limit_VfromE = thm "Limit_VfromE";
+val zero_in_VLimit = thm "zero_in_VLimit";
+val singleton_in_VLimit = thm "singleton_in_VLimit";
+val Vfrom_UnI1 = thm "Vfrom_UnI1";
+val Vfrom_UnI2 = thm "Vfrom_UnI2";
+val doubleton_in_VLimit = thm "doubleton_in_VLimit";
+val Pair_in_VLimit = thm "Pair_in_VLimit";
+val product_VLimit = thm "product_VLimit";
+val Sigma_subset_VLimit = thm "Sigma_subset_VLimit";
+val nat_subset_VLimit = thm "nat_subset_VLimit";
+val nat_into_VLimit = thm "nat_into_VLimit";
+val zero_in_VLimit = thm "zero_in_VLimit";
+val one_in_VLimit = thm "one_in_VLimit";
+val Inl_in_VLimit = thm "Inl_in_VLimit";
+val Inr_in_VLimit = thm "Inr_in_VLimit";
+val sum_VLimit = thm "sum_VLimit";
+val sum_subset_VLimit = thm "sum_subset_VLimit";
+val Transset_Vfrom = thm "Transset_Vfrom";
+val Transset_Vfrom_succ = thm "Transset_Vfrom_succ";
+val Transset_Pair_subset = thm "Transset_Pair_subset";
+val Transset_Pair_subset_VLimit = thm "Transset_Pair_subset_VLimit";
+val Union_in_Vfrom = thm "Union_in_Vfrom";
+val Union_in_VLimit = thm "Union_in_VLimit";
+val in_VLimit = thm "in_VLimit";
+val prod_in_Vfrom = thm "prod_in_Vfrom";
+val prod_in_VLimit = thm "prod_in_VLimit";
+val sum_in_Vfrom = thm "sum_in_Vfrom";
+val sum_in_VLimit = thm "sum_in_VLimit";
+val fun_in_Vfrom = thm "fun_in_Vfrom";
+val fun_in_VLimit = thm "fun_in_VLimit";
+val Pow_in_Vfrom = thm "Pow_in_Vfrom";
+val Pow_in_VLimit = thm "Pow_in_VLimit";
+val Vset = thm "Vset";
+val Vset_succ = thm "Vset_succ";
+val Transset_Vset = thm "Transset_Vset";
+val VsetD = thm "VsetD";
+val VsetI_lemma = thm "VsetI_lemma";
+val VsetI = thm "VsetI";
+val Vset_Ord_rank_iff = thm "Vset_Ord_rank_iff";
+val Vset_rank_iff = thm "Vset_rank_iff";
+val rank_Vset = thm "rank_Vset";
+val arg_subset_Vset_rank = thm "arg_subset_Vset_rank";
+val Int_Vset_subset = thm "Int_Vset_subset";
+val rank_Inl = thm "rank_Inl";
+val rank_Inr = thm "rank_Inr";
+val Vrec = thm "Vrec";
+val def_Vrec = thm "def_Vrec";
+val Vrecursor = thm "Vrecursor";
+val def_Vrecursor = thm "def_Vrecursor";
+val univ_mono = thm "univ_mono";
+val Transset_univ = thm "Transset_univ";
+val univ_eq_UN = thm "univ_eq_UN";
+val subset_univ_eq_Int = thm "subset_univ_eq_Int";
+val univ_Int_Vfrom_subset = thm "univ_Int_Vfrom_subset";
+val univ_Int_Vfrom_eq = thm "univ_Int_Vfrom_eq";
+val zero_in_univ = thm "zero_in_univ";
+val A_subset_univ = thm "A_subset_univ";
+val A_into_univ = thm "A_into_univ";
+val singleton_in_univ = thm "singleton_in_univ";
+val doubleton_in_univ = thm "doubleton_in_univ";
+val Pair_in_univ = thm "Pair_in_univ";
+val Union_in_univ = thm "Union_in_univ";
+val product_univ = thm "product_univ";
+val nat_subset_univ = thm "nat_subset_univ";
+val nat_into_univ = thm "nat_into_univ";
+val one_in_univ = thm "one_in_univ";
+val two_in_univ = thm "two_in_univ";
+val bool_subset_univ = thm "bool_subset_univ";
+val bool_into_univ = thm "bool_into_univ";
+val Inl_in_univ = thm "Inl_in_univ";
+val Inr_in_univ = thm "Inr_in_univ";
+val sum_univ = thm "sum_univ";
+val sum_subset_univ = thm "sum_subset_univ";
+val Fin_Vfrom_lemma = thm "Fin_Vfrom_lemma";
+val Fin_VLimit = thm "Fin_VLimit";
+val Fin_subset_VLimit = thm "Fin_subset_VLimit";
+val Fin_univ = thm "Fin_univ";
+val nat_fun_VLimit = thm "nat_fun_VLimit";
+val nat_fun_subset_VLimit = thm "nat_fun_subset_VLimit";
+val nat_fun_univ = thm "nat_fun_univ";
+val FiniteFun_VLimit1 = thm "FiniteFun_VLimit1";
+val FiniteFun_univ1 = thm "FiniteFun_univ1";
+val FiniteFun_VLimit = thm "FiniteFun_VLimit";
+val FiniteFun_univ = thm "FiniteFun_univ";
+val FiniteFun_in_univ = thm "FiniteFun_in_univ";
+val FiniteFun_in_univ' = thm "FiniteFun_in_univ'";
+val doubleton_in_Vfrom_D = thm "doubleton_in_Vfrom_D";
+val Vfrom_doubleton_D = thm "Vfrom_doubleton_D";
+val Pair_in_Vfrom_D = thm "Pair_in_Vfrom_D";
+val product_Int_Vfrom_subset = thm "product_Int_Vfrom_subset";
+
+val rank_rls = thms "rank_rls";
+val rank_ss = simpset() addsimps [VsetI] 
+              addsimps rank_rls @ (rank_rls RLN (2, [lt_trans]));
+
+*}
 
 end