--- a/src/HOL/Complex/CSeries.ML Sat Feb 21 11:43:39 2004 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,210 +0,0 @@
-(* Title : CSeries.ML
- Author : Jacques D. Fleuriot
- Copyright : 2002 University of Edinburgh
- Description : Finite summation and infinite series for complex numbers
-*)
-
-
-Goal "sumc (Suc n) n f = 0";
-by (induct_tac "n" 1);
-by (Auto_tac);
-qed "sumc_Suc_zero";
-Addsimps [sumc_Suc_zero];
-
-Goal "sumc m m f = 0";
-by (induct_tac "m" 1);
-by (Auto_tac);
-qed "sumc_eq_bounds";
-Addsimps [sumc_eq_bounds];
-
-Goal "sumc m (Suc m) f = f(m)";
-by (Auto_tac);
-qed "sumc_Suc_eq";
-Addsimps [sumc_Suc_eq];
-
-Goal "sumc (m+k) k f = 0";
-by (induct_tac "k" 1);
-by (Auto_tac);
-qed "sumc_add_lbound_zero";
-Addsimps [sumc_add_lbound_zero];
-
-Goal "sumc m n f + sumc m n g = sumc m n (%n. f n + g n)";
-by (induct_tac "n" 1);
-by (auto_tac (claset(),simpset() addsimps add_ac));
-qed "sumc_add";
-
-Goal "r * sumc m n f = sumc m n (%n. r * f n)";
-by (induct_tac "n" 1);
-by (Auto_tac);
-by (auto_tac (claset(),simpset() addsimps
- [right_distrib]));
-qed "sumc_mult";
-
-Goal "n < p --> sumc 0 n f + sumc n p f = sumc 0 p f";
-by (induct_tac "p" 1);
-by (auto_tac (claset() addSDs [CLAIM "n < Suc na ==> n <= na",
- leI] addDs [le_anti_sym], simpset()));
-qed_spec_mp "sumc_split_add";
-
-Goal "n < p ==> sumc 0 p f + \
-\ - sumc 0 n f = sumc n p f";
-by (dres_inst_tac [("f1","f")] (sumc_split_add RS sym) 1);
-by (asm_simp_tac (simpset() addsimps add_ac) 1);
-qed "sumc_split_add_minus";
-
-Goal "cmod(sumc m n f) <= sumr m n (%i. cmod(f i))";
-by (induct_tac "n" 1);
-by (auto_tac (claset() addIs [complex_mod_triangle_ineq RS order_trans],
- simpset()));
-qed "sumc_cmod";
-
-Goal "!!f g. (ALL r. m <= r & r < n --> f r = g r) \
-\ --> sumc m n f = sumc m n g";
-by (induct_tac "n" 1);
-by (Auto_tac);
-qed_spec_mp "sumc_fun_eq";
-
-Goal "sumc 0 n (%i. r) = complex_of_real (real n) * r";
-by (induct_tac "n" 1);
-by (auto_tac (claset(),
- simpset() addsimps [left_distrib,
- complex_of_real_add RS sym,
- real_of_nat_Suc]));
-qed "sumc_const";
-Addsimps [sumc_const];
-
-Goal "sumc 0 n f + -(complex_of_real(real n) * r) = sumc 0 n (%i. f i + -r)";
-by (full_simp_tac (simpset() addsimps [sumc_add RS sym]) 1);
-qed "sumc_add_mult_const";
-
-Goalw [complex_diff_def]
- "sumc 0 n f - (complex_of_real(real n)*r) = sumc 0 n (%i. f i - r)";
-by (full_simp_tac (simpset() addsimps [sumc_add_mult_const]) 1);
-qed "sumc_diff_mult_const";
-
-Goal "n < m --> sumc m n f = 0";
-by (induct_tac "n" 1);
-by Auto_tac;
-qed_spec_mp "sumc_less_bounds_zero";
-Addsimps [sumc_less_bounds_zero];
-
-Goal "sumc m n (%i. - f i) = - sumc m n f";
-by (induct_tac "n" 1);
-by Auto_tac;
-qed "sumc_minus";
-
-Goal "sumc (m+k) (n+k) f = sumc m n (%i. f(i + k))";
-by (induct_tac "n" 1);
-by (Auto_tac);
-qed "sumc_shift_bounds";
-
-Goal "sumc 0 (2*n) (%i. (-1) ^ Suc i) = 0";
-by (induct_tac "n" 1);
-by (Auto_tac);
-qed "sumc_minus_one_complexpow_zero";
-Addsimps [sumc_minus_one_complexpow_zero];
-
-Goal "(ALL n. m <= Suc n --> f n = r) & m <= na \
-\ --> sumc m na f = (complex_of_real(real (na - m)) * r)";
-by (induct_tac "na" 1);
-by (auto_tac (claset(),simpset() addsimps [left_distrib, Suc_diff_n,
- real_of_nat_Suc,complex_of_real_add RS sym,
- left_distrib]));
-qed_spec_mp "sumc_interval_const";
-
-Goal "(ALL n. m <= n --> f n = r) & m <= na \
-\ --> sumc m na f = (complex_of_real(real (na - m)) * r)";
-by (induct_tac "na" 1);
-by (auto_tac (claset(),simpset() addsimps [left_distrib, Suc_diff_n,
- real_of_nat_Suc,complex_of_real_add RS sym,
- left_distrib]));
-qed_spec_mp "sumc_interval_const2";
-
-(***
-Goal "(ALL n. m <= n --> 0 <= cmod(f n)) & m < k --> cmod(sumc 0 m f) <= cmod(sumc 0 k f)";
-by (induct_tac "k" 1);
-by (Step_tac 1);
-by (ALLGOALS(asm_full_simp_tac (simpset() addsimps [less_Suc_eq_le])));
-by (ALLGOALS(dres_inst_tac [("x","n")] spec));
-by (Step_tac 1);
-by (dtac le_imp_less_or_eq 1 THEN Step_tac 1);
-by (dtac add_mono 2);
-by (dres_inst_tac [("i","sumr 0 m f")] (order_refl RS add_mono) 1);
-by (Auto_tac);
-qed_spec_mp "sumc_le";
-
-Goal "!!f g. (ALL r. m <= r & r < n --> f r <= g r) \
-\ --> sumc m n f <= sumc m n g";
-by (induct_tac "n" 1);
-by (auto_tac (claset() addIs [add_mono],
- simpset() addsimps [le_def]));
-qed_spec_mp "sumc_le2";
-
-Goal "(ALL n. 0 <= f n) --> 0 <= sumc m n f";
-by (induct_tac "n" 1);
-by Auto_tac;
-by (dres_inst_tac [("x","n")] spec 1);
-by (arith_tac 1);
-qed_spec_mp "sumc_ge_zero";
-
-Goal "(ALL n. m <= n --> 0 <= f n) --> 0 <= sumc m n f";
-by (induct_tac "n" 1);
-by Auto_tac;
-by (dres_inst_tac [("x","n")] spec 1);
-by (arith_tac 1);
-qed_spec_mp "sumc_ge_zero2";
-***)
-
-Goal "0 <= sumr m n (%n. cmod (f n))";
-by (induct_tac "n" 1);
-by Auto_tac;
-by (res_inst_tac [("j","0")] real_le_trans 1);
-by Auto_tac;
-qed "sumr_cmod_ge_zero";
-Addsimps [sumr_cmod_ge_zero];
-AddSIs [sumr_cmod_ge_zero];
-
-Goal "abs (sumr m n (%n. cmod (f n))) = (sumr m n (%n. cmod (f n)))";
-by (rtac (abs_eqI1 RS ssubst) 1 THEN Auto_tac);
-qed "rabs_sumc_cmod_cancel";
-Addsimps [rabs_sumc_cmod_cancel];
-
-Goal "ALL n. N <= n --> f n = 0 \
-\ ==> ALL m n. N <= m --> sumc m n f = 0";
-by (Step_tac 1);
-by (induct_tac "n" 1);
-by (Auto_tac);
-qed "sumc_zero";
-
-Goal "ALL n. N <= n --> f (Suc n) = 0 \
-\ ==> ALL m n. Suc N <= m --> sumc m n f = 0";
-by (rtac sumc_zero 1 THEN Step_tac 1);
-by (dres_inst_tac [("x","n - 1")] spec 1);
-by Auto_tac;
-by (arith_tac 1);
-qed "fun_zero_sumc_zero";
-
-Goal "sumc 1 n (%n. f(n) * 0 ^ n) = 0";
-by (induct_tac "n" 1);
-by (case_tac "n" 2);
-by Auto_tac;
-qed "sumc_one_lb_complexpow_zero";
-Addsimps [sumc_one_lb_complexpow_zero];
-
-Goalw [complex_diff_def] "sumc m n f - sumc m n g = sumc m n (%n. f n - g n)";
-by (simp_tac (simpset() addsimps [sumc_add RS sym,sumc_minus]) 1);
-qed "sumc_diff";
-
-Goal "(ALL p. (m <= p & p < m + n --> (f p = g p))) --> sumc m n f = sumc m n g";
-by (induct_tac "n" 1);
-by (Auto_tac);
-qed_spec_mp "sumc_subst";
-
-Goal "sumc 0 n (%m. sumc (m * k) (m*k + k) f) = sumc 0 (n * k) f";
-by (subgoal_tac "k = 0 | 0 < k" 1);
-by (Auto_tac);
-by (induct_tac "n" 1);
-by (auto_tac (claset(),simpset() addsimps [sumc_split_add,add_commute]));
-qed "sumc_group";
-Addsimps [sumc_group];
-