src/ZF/AC/DC.thy
changeset 76213 e44d86131648
parent 68847 511d163ab623
child 76214 0c18df79b1c8
--- a/src/ZF/AC/DC.thy	Tue Sep 27 13:34:54 2022 +0200
+++ b/src/ZF/AC/DC.thy	Tue Sep 27 16:51:35 2022 +0100
@@ -8,7 +8,7 @@
 imports AC_Equiv Hartog Cardinal_aux
 begin
 
-lemma RepFun_lepoll: "Ord(a) ==> {P(b). b \<in> a} \<lesssim> a"
+lemma RepFun_lepoll: "Ord(a) \<Longrightarrow> {P(b). b \<in> a} \<lesssim> a"
 apply (unfold lepoll_def)
 apply (rule_tac x = "\<lambda>z \<in> RepFun (a,P) . \<mu> i. z=P (i) " in exI)
 apply (rule_tac d="%z. P (z)" in lam_injective)
@@ -18,7 +18,7 @@
 done
 
 text\<open>Trivial in the presence of AC, but here we need a wellordering of X\<close>
-lemma image_Ord_lepoll: "[| f \<in> X->Y; Ord(X) |] ==> f``X \<lesssim> X"
+lemma image_Ord_lepoll: "\<lbrakk>f \<in> X->Y; Ord(X)\<rbrakk> \<Longrightarrow> f``X \<lesssim> X"
 apply (unfold lepoll_def)
 apply (rule_tac x = "\<lambda>x \<in> f``X. \<mu> y. f`y = x" in exI)
 apply (rule_tac d = "%z. f`z" in lam_injective)
@@ -29,70 +29,70 @@
 done
 
 lemma range_subset_domain: 
-      "[| R \<subseteq> X*X;   !!g. g \<in> X ==> \<exists>u. <g,u> \<in> R |] 
-       ==> range(R) \<subseteq> domain(R)"
+      "\<lbrakk>R \<subseteq> X*X;   \<And>g. g \<in> X \<Longrightarrow> \<exists>u. <g,u> \<in> R\<rbrakk> 
+       \<Longrightarrow> range(R) \<subseteq> domain(R)"
 by blast 
 
-lemma cons_fun_type: "g \<in> n->X ==> cons(<n,x>, g) \<in> succ(n) -> cons(x, X)"
+lemma cons_fun_type: "g \<in> n->X \<Longrightarrow> cons(<n,x>, g) \<in> succ(n) -> cons(x, X)"
 apply (unfold succ_def)
 apply (fast intro!: fun_extend elim!: mem_irrefl)
 done
 
 lemma cons_fun_type2:
-     "[| g \<in> n->X; x \<in> X |] ==> cons(<n,x>, g) \<in> succ(n) -> X"
+     "\<lbrakk>g \<in> n->X; x \<in> X\<rbrakk> \<Longrightarrow> cons(<n,x>, g) \<in> succ(n) -> X"
 by (erule cons_absorb [THEN subst], erule cons_fun_type)
 
-lemma cons_image_n: "n \<in> nat ==> cons(<n,x>, g)``n = g``n"
+lemma cons_image_n: "n \<in> nat \<Longrightarrow> cons(<n,x>, g)``n = g``n"
 by (fast elim!: mem_irrefl)
 
-lemma cons_val_n: "g \<in> n->X ==> cons(<n,x>, g)`n = x"
+lemma cons_val_n: "g \<in> n->X \<Longrightarrow> cons(<n,x>, g)`n = x"
 by (fast intro!: apply_equality elim!: cons_fun_type)
 
-lemma cons_image_k: "k \<in> n ==> cons(<n,x>, g)``k = g``k"
+lemma cons_image_k: "k \<in> n \<Longrightarrow> cons(<n,x>, g)``k = g``k"
 by (fast elim: mem_asym)
 
-lemma cons_val_k: "[| k \<in> n; g \<in> n->X |] ==> cons(<n,x>, g)`k = g`k"
+lemma cons_val_k: "\<lbrakk>k \<in> n; g \<in> n->X\<rbrakk> \<Longrightarrow> cons(<n,x>, g)`k = g`k"
 by (fast intro!: apply_equality consI2 elim!: cons_fun_type apply_Pair)
 
-lemma domain_cons_eq_succ: "domain(f)=x ==> domain(cons(<x,y>, f)) = succ(x)"
+lemma domain_cons_eq_succ: "domain(f)=x \<Longrightarrow> domain(cons(<x,y>, f)) = succ(x)"
 by (simp add: domain_cons succ_def)
 
-lemma restrict_cons_eq: "g \<in> n->X ==> restrict(cons(<n,x>, g), n) = g"
+lemma restrict_cons_eq: "g \<in> n->X \<Longrightarrow> restrict(cons(<n,x>, g), n) = g"
 apply (simp add: restrict_def Pi_iff)
 apply (blast intro: elim: mem_irrefl)  
 done
 
-lemma succ_in_succ: "[| Ord(k); i \<in> k |] ==> succ(i) \<in> succ(k)"
+lemma succ_in_succ: "\<lbrakk>Ord(k); i \<in> k\<rbrakk> \<Longrightarrow> succ(i) \<in> succ(k)"
 apply (rule Ord_linear [of "succ(i)" "succ(k)", THEN disjE])
 apply (fast elim: Ord_in_Ord mem_irrefl mem_asym)+
 done
 
 lemma restrict_eq_imp_val_eq: 
-      "[|restrict(f, domain(g)) = g; x \<in> domain(g)|] 
-       ==> f`x = g`x" 
+      "\<lbrakk>restrict(f, domain(g)) = g; x \<in> domain(g)\<rbrakk> 
+       \<Longrightarrow> f`x = g`x" 
 by (erule subst, simp add: restrict)
 
-lemma domain_eq_imp_fun_type: "[| domain(f)=A; f \<in> B->C |] ==> f \<in> A->C"
+lemma domain_eq_imp_fun_type: "\<lbrakk>domain(f)=A; f \<in> B->C\<rbrakk> \<Longrightarrow> f \<in> A->C"
 by (frule domain_of_fun, fast)
 
-lemma ex_in_domain: "[| R \<subseteq> A * B; R \<noteq> 0 |] ==> \<exists>x. x \<in> domain(R)"
+lemma ex_in_domain: "\<lbrakk>R \<subseteq> A * B; R \<noteq> 0\<rbrakk> \<Longrightarrow> \<exists>x. x \<in> domain(R)"
 by (fast elim!: not_emptyE)
 
 
 definition
   DC  :: "i => o"  where
-    "DC(a) == \<forall>X R. R \<subseteq> Pow(X)*X  &
+    "DC(a) \<equiv> \<forall>X R. R \<subseteq> Pow(X)*X  &
                     (\<forall>Y \<in> Pow(X). Y \<prec> a \<longrightarrow> (\<exists>x \<in> X. <Y,x> \<in> R)) 
                     \<longrightarrow> (\<exists>f \<in> a->X. \<forall>b<a. <f``b,f`b> \<in> R)"
 
 definition
   DC0 :: o  where
-    "DC0 == \<forall>A B R. R \<subseteq> A*B & R\<noteq>0 & range(R) \<subseteq> domain(R) 
+    "DC0 \<equiv> \<forall>A B R. R \<subseteq> A*B & R\<noteq>0 & range(R) \<subseteq> domain(R) 
                     \<longrightarrow> (\<exists>f \<in> nat->domain(R). \<forall>n \<in> nat. <f`n,f`succ(n)>:R)"
 
 definition
   ff  :: "[i, i, i, i] => i"  where
-    "ff(b, X, Q, R) ==
+    "ff(b, X, Q, R) \<equiv>
            transrec(b, %c r. THE x. first(x, {x \<in> X. <r``c, x> \<in> R}, Q))"
 
 
@@ -101,13 +101,13 @@
 
   assumes all_ex: "\<forall>Y \<in> Pow(X). Y \<prec> nat \<longrightarrow> (\<exists>x \<in> X. <Y, x> \<in> R)"
 
-  defines XX_def: "XX == (\<Union>n \<in> nat. {f \<in> n->X. \<forall>k \<in> n. <f``k, f`k> \<in> R})"
-     and RR_def:  "RR == {<z1,z2>:XX*XX. domain(z2)=succ(domain(z1))  
+  defines XX_def: "XX \<equiv> (\<Union>n \<in> nat. {f \<in> n->X. \<forall>k \<in> n. <f``k, f`k> \<in> R})"
+     and RR_def:  "RR \<equiv> {<z1,z2>:XX*XX. domain(z2)=succ(domain(z1))  
                                        & restrict(z2, domain(z1)) = z1}"
 begin
 
 (* ********************************************************************** *)
-(* DC ==> DC(omega)                                                       *)
+(* DC \<Longrightarrow> DC(omega)                                                       *)
 (*                                                                        *)
 (* The scheme of the proof:                                               *)
 (*                                                                        *)
@@ -169,8 +169,8 @@
 done
 
 lemma lemma2:
-     "[| \<forall>n \<in> nat. <f`n, f`succ(n)> \<in> RR;  f \<in> nat -> XX;  n \<in> nat |]   
-      ==> \<exists>k \<in> nat. f`succ(n) \<in> k -> X & n \<in> k   
+     "\<lbrakk>\<forall>n \<in> nat. <f`n, f`succ(n)> \<in> RR;  f \<in> nat -> XX;  n \<in> nat\<rbrakk>   
+      \<Longrightarrow> \<exists>k \<in> nat. f`succ(n) \<in> k -> X & n \<in> k   
                   & <f`succ(n)``n, f`succ(n)`n> \<in> R"
 apply (induct_tac "n")
 apply (drule apply_type [OF _ nat_1I])
@@ -198,8 +198,8 @@
 done
 
 lemma lemma3_1:
-     "[| \<forall>n \<in> nat. <f`n, f`succ(n)> \<in> RR;  f \<in> nat -> XX;  m \<in> nat |]   
-      ==>  {f`succ(x)`x. x \<in> m} = {f`succ(m)`x. x \<in> m}"
+     "\<lbrakk>\<forall>n \<in> nat. <f`n, f`succ(n)> \<in> RR;  f \<in> nat -> XX;  m \<in> nat\<rbrakk>   
+      \<Longrightarrow>  {f`succ(x)`x. x \<in> m} = {f`succ(m)`x. x \<in> m}"
 apply (subgoal_tac "\<forall>x \<in> m. f`succ (m) `x = f`succ (x) `x")
 apply simp
 apply (induct_tac "m", blast)
@@ -221,8 +221,8 @@
 done
 
 lemma lemma3:
-     "[| \<forall>n \<in> nat. <f`n, f`succ(n)> \<in> RR;  f \<in> nat -> XX;  m \<in> nat |]  
-      ==> (\<lambda>x \<in> nat. f`succ(x)`x) `` m = f`succ(m)``m"
+     "\<lbrakk>\<forall>n \<in> nat. <f`n, f`succ(n)> \<in> RR;  f \<in> nat -> XX;  m \<in> nat\<rbrakk>  
+      \<Longrightarrow> (\<lambda>x \<in> nat. f`succ(x)`x) `` m = f`succ(m)``m"
 apply (erule natE, simp)
 apply (subst image_lam)
  apply (fast elim!: OrdmemD [OF nat_succI Ord_nat])
@@ -234,7 +234,7 @@
 
 end
 
-theorem DC0_imp_DC_nat: "DC0 ==> DC(nat)"
+theorem DC0_imp_DC_nat: "DC0 \<Longrightarrow> DC(nat)"
 apply (unfold DC_def DC0_def, clarify)
 apply (elim allE)
 apply (erule impE)
@@ -256,7 +256,7 @@
 
 
 (* ************************************************************************
-   DC(omega) ==> DC                                                       
+   DC(omega) \<Longrightarrow> DC                                                       
                                                                           
    The scheme of the proof:                                               
                                                                           
@@ -269,7 +269,7 @@
     RR = {<z1,z2>:Fin(XX)*XX. 
            (domain(z2)=succ(\<Union>f \<in> z1. domain(f)) &
             (\<forall>f \<in> z1. restrict(z2, domain(f)) = f)) |      
-           (~ (\<exists>g \<in> XX. domain(g)=succ(\<Union>f \<in> z1. domain(f)) &
+           (\<not> (\<exists>g \<in> XX. domain(g)=succ(\<Union>f \<in> z1. domain(f)) &
                         (\<forall>f \<in> z1. restrict(g, domain(f)) = f)) &           
             z2={<0,x>})}                                          
                                                                           
@@ -287,7 +287,7 @@
 ************************************************************************* *)
 
 lemma singleton_in_funs: 
- "x \<in> X ==> {<0,x>} \<in> 
+ "x \<in> X \<Longrightarrow> {<0,x>} \<in> 
             (\<Union>n \<in> nat. {f \<in> succ(n)->X. \<forall>k \<in> n. <f`k, f`succ(k)> \<in> R})"
 apply (rule nat_0I [THEN UN_I])
 apply (force simp add: singleton_0 [symmetric]
@@ -297,16 +297,16 @@
 
 locale imp_DC0 =
   fixes XX and RR and x and R and f and allRR
-  defines XX_def: "XX == (\<Union>n \<in> nat.
+  defines XX_def: "XX \<equiv> (\<Union>n \<in> nat.
                       {f \<in> succ(n)->domain(R). \<forall>k \<in> n. <f`k, f`succ(k)> \<in> R})"
       and RR_def:
-         "RR == {<z1,z2>:Fin(XX)*XX. 
+         "RR \<equiv> {<z1,z2>:Fin(XX)*XX. 
                   (domain(z2)=succ(\<Union>f \<in> z1. domain(f))  
                     & (\<forall>f \<in> z1. restrict(z2, domain(f)) = f))
-                  | (~ (\<exists>g \<in> XX. domain(g)=succ(\<Union>f \<in> z1. domain(f))  
+                  | (\<not> (\<exists>g \<in> XX. domain(g)=succ(\<Union>f \<in> z1. domain(f))  
                      & (\<forall>f \<in> z1. restrict(g, domain(f)) = f)) & z2={<0,x>})}"
       and allRR_def:
-        "allRR == \<forall>b<nat.
+        "allRR \<equiv> \<forall>b<nat.
                    <f``b, f`b> \<in>  
                     {<z1,z2>\<in>Fin(XX)*XX. (domain(z2)=succ(\<Union>f \<in> z1. domain(f))
                                     & (\<Union>f \<in> z1. domain(f)) = b  
@@ -314,8 +314,8 @@
 begin
 
 lemma lemma4:
-     "[| range(R) \<subseteq> domain(R);  x \<in> domain(R) |]   
-      ==> RR \<subseteq> Pow(XX)*XX &   
+     "\<lbrakk>range(R) \<subseteq> domain(R);  x \<in> domain(R)\<rbrakk>   
+      \<Longrightarrow> RR \<subseteq> Pow(XX)*XX &   
              (\<forall>Y \<in> Pow(XX). Y \<prec> nat \<longrightarrow> (\<exists>x \<in> XX. <Y,x>:RR))"
 apply (rule conjI)
 apply (force dest!: FinD [THEN PowI] simp add: RR_def)
@@ -332,34 +332,34 @@
 done
 
 lemma UN_image_succ_eq:
-     "[| f \<in> nat->X; n \<in> nat |] 
-      ==> (\<Union>x \<in> f``succ(n). P(x)) =  P(f`n) \<union> (\<Union>x \<in> f``n. P(x))"
+     "\<lbrakk>f \<in> nat->X; n \<in> nat\<rbrakk> 
+      \<Longrightarrow> (\<Union>x \<in> f``succ(n). P(x)) =  P(f`n) \<union> (\<Union>x \<in> f``n. P(x))"
 by (simp add: image_fun OrdmemD) 
 
 lemma UN_image_succ_eq_succ:
-     "[| (\<Union>x \<in> f``n. P(x)) = y; P(f`n) = succ(y);   
-         f \<in> nat -> X; n \<in> nat |] ==> (\<Union>x \<in> f``succ(n). P(x)) = succ(y)"
+     "\<lbrakk>(\<Union>x \<in> f``n. P(x)) = y; P(f`n) = succ(y);   
+         f \<in> nat -> X; n \<in> nat\<rbrakk> \<Longrightarrow> (\<Union>x \<in> f``succ(n). P(x)) = succ(y)"
 by (simp add: UN_image_succ_eq, blast)
 
 lemma apply_domain_type:
-     "[| h \<in> succ(n) -> D;  n \<in> nat; domain(h)=succ(y) |] ==> h`y \<in> D"
+     "\<lbrakk>h \<in> succ(n) -> D;  n \<in> nat; domain(h)=succ(y)\<rbrakk> \<Longrightarrow> h`y \<in> D"
 by (fast elim: apply_type dest!: trans [OF sym domain_of_fun])
 
 lemma image_fun_succ:
-     "[| h \<in> nat -> X; n \<in> nat |] ==> h``succ(n) = cons(h`n, h``n)"
+     "\<lbrakk>h \<in> nat -> X; n \<in> nat\<rbrakk> \<Longrightarrow> h``succ(n) = cons(h`n, h``n)"
 by (simp add: image_fun OrdmemD) 
 
 lemma f_n_type:
-     "[| domain(f`n) = succ(k); f \<in> nat -> XX;  n \<in> nat |]    
-      ==> f`n \<in> succ(k) -> domain(R)"
+     "\<lbrakk>domain(f`n) = succ(k); f \<in> nat -> XX;  n \<in> nat\<rbrakk>    
+      \<Longrightarrow> f`n \<in> succ(k) -> domain(R)"
 apply (unfold XX_def)
 apply (drule apply_type, assumption)
 apply (fast elim: domain_eq_imp_fun_type)
 done
 
 lemma f_n_pairs_in_R [rule_format]: 
-     "[| h \<in> nat -> XX;  domain(h`n) = succ(k);  n \<in> nat |]   
-      ==> \<forall>i \<in> k. <h`n`i, h`n`succ(i)> \<in> R"
+     "\<lbrakk>h \<in> nat -> XX;  domain(h`n) = succ(k);  n \<in> nat\<rbrakk>   
+      \<Longrightarrow> \<forall>i \<in> k. <h`n`i, h`n`succ(i)> \<in> R"
 apply (unfold XX_def)
 apply (drule apply_type, assumption)
 apply (elim UN_E CollectE)
@@ -367,8 +367,8 @@
 done
 
 lemma restrict_cons_eq_restrict: 
-     "[| restrict(h, domain(u))=u;  h \<in> n->X;  domain(u) \<subseteq> n |]   
-      ==> restrict(cons(<n, y>, h), domain(u)) = u"
+     "\<lbrakk>restrict(h, domain(u))=u;  h \<in> n->X;  domain(u) \<subseteq> n\<rbrakk>   
+      \<Longrightarrow> restrict(cons(<n, y>, h), domain(u)) = u"
 apply (unfold restrict_def)
 apply (simp add: restrict_def Pi_iff)
 apply (erule sym [THEN trans, symmetric])
@@ -376,11 +376,11 @@
 done
 
 lemma all_in_image_restrict_eq:
-     "[| \<forall>x \<in> f``n. restrict(f`n, domain(x))=x;   
+     "\<lbrakk>\<forall>x \<in> f``n. restrict(f`n, domain(x))=x;   
          f \<in> nat -> XX;   
          n \<in> nat;  domain(f`n) = succ(n);   
-         (\<Union>x \<in> f``n. domain(x)) \<subseteq> n |]  
-      ==> \<forall>x \<in> f``succ(n). restrict(cons(<succ(n),y>, f`n), domain(x)) = x"
+         (\<Union>x \<in> f``n. domain(x)) \<subseteq> n\<rbrakk>  
+      \<Longrightarrow> \<forall>x \<in> f``succ(n). restrict(cons(<succ(n),y>, f`n), domain(x)) = x"
 apply (rule ballI)
 apply (simp add: image_fun_succ)
 apply (drule f_n_type, assumption+)
@@ -390,16 +390,16 @@
 done
 
 lemma simplify_recursion: 
-     "[| \<forall>b<nat. <f``b, f`b> \<in> RR;   
-         f \<in> nat -> XX; range(R) \<subseteq> domain(R); x \<in> domain(R)|]    
-      ==> allRR"
+     "\<lbrakk>\<forall>b<nat. <f``b, f`b> \<in> RR;   
+         f \<in> nat -> XX; range(R) \<subseteq> domain(R); x \<in> domain(R)\<rbrakk>    
+      \<Longrightarrow> allRR"
 apply (unfold RR_def allRR_def)
 apply (rule oallI, drule ltD)
 apply (erule nat_induct)
 apply (drule_tac x=0 in ospec, blast intro: Limit_has_0) 
 apply (force simp add: singleton_fun [THEN domain_of_fun] singleton_in_funs) 
 (*induction step*) (** LEVEL 5 **)
-(*prevent simplification of ~\<exists> to \<forall>~ *)
+(*prevent simplification of \<not>\<exists> to \<forall>\<not> *)
 apply (simp only: separation split)
 apply (drule_tac x="succ(xa)" in ospec, blast intro: ltI)
 apply (elim conjE disjE)
@@ -435,8 +435,8 @@
 
 
 lemma lemma2: 
-     "[| allRR; f \<in> nat->XX; range(R) \<subseteq> domain(R); x \<in> domain(R); n \<in> nat |]
-      ==> f`n \<in> succ(n) -> domain(R) & (\<forall>i \<in> n. <f`n`i, f`n`succ(i)>:R)"
+     "\<lbrakk>allRR; f \<in> nat->XX; range(R) \<subseteq> domain(R); x \<in> domain(R); n \<in> nat\<rbrakk>
+      \<Longrightarrow> f`n \<in> succ(n) -> domain(R) & (\<forall>i \<in> n. <f`n`i, f`n`succ(i)>:R)"
 apply (unfold allRR_def)
 apply (drule ospec)
 apply (erule ltI [OF _ Ord_nat])
@@ -448,8 +448,8 @@
 done
 
 lemma lemma3:
-     "[| allRR; f \<in> nat->XX; n\<in>nat; range(R) \<subseteq> domain(R);  x \<in> domain(R) |]
-      ==> f`n`n = f`succ(n)`n"
+     "\<lbrakk>allRR; f \<in> nat->XX; n\<in>nat; range(R) \<subseteq> domain(R);  x \<in> domain(R)\<rbrakk>
+      \<Longrightarrow> f`n`n = f`succ(n)`n"
 apply (frule lemma2 [THEN conjunct1, THEN domain_of_fun], assumption+)
 apply (unfold allRR_def)
 apply (drule ospec) 
@@ -462,7 +462,7 @@
 end
 
 
-theorem DC_nat_imp_DC0: "DC(nat) ==> DC0"
+theorem DC_nat_imp_DC0: "DC(nat) \<Longrightarrow> DC0"
 apply (unfold DC_def DC0_def)
 apply (intro allI impI)
 apply (erule asm_rl conjE ex_in_domain [THEN exE] allE)+
@@ -479,13 +479,13 @@
 done
 
 (* ********************************************************************** *)
-(* \<forall>K. Card(K) \<longrightarrow> DC(K) ==> WO3                                       *)
+(* \<forall>K. Card(K) \<longrightarrow> DC(K) \<Longrightarrow> WO3                                       *)
 (* ********************************************************************** *)
 
 lemma fun_Ord_inj:
-      "[| f \<in> a->X;  Ord(a); 
-          !!b c. [| b<c; c \<in> a |] ==> f`b\<noteq>f`c |]    
-       ==> f \<in> inj(a, X)"
+      "\<lbrakk>f \<in> a->X;  Ord(a); 
+          \<And>b c. \<lbrakk>b<c; c \<in> a\<rbrakk> \<Longrightarrow> f`b\<noteq>f`c\<rbrakk>    
+       \<Longrightarrow> f \<in> inj(a, X)"
 apply (unfold inj_def, simp) 
 apply (intro ballI impI)
 apply (rule_tac j=x in Ord_in_Ord [THEN Ord_linear_lt], assumption+)
@@ -493,17 +493,17 @@
 apply (atomize, blast dest: not_sym) 
 done
 
-lemma value_in_image: "[| f \<in> X->Y; A \<subseteq> X; a \<in> A |] ==> f`a \<in> f``A"
+lemma value_in_image: "\<lbrakk>f \<in> X->Y; A \<subseteq> X; a \<in> A\<rbrakk> \<Longrightarrow> f`a \<in> f``A"
 by (fast elim!: image_fun [THEN ssubst])
 
-lemma lesspoll_lemma: "[| ~ A \<prec> B; C \<prec> B |] ==> A - C \<noteq> 0"
+lemma lesspoll_lemma: "\<lbrakk>\<not> A \<prec> B; C \<prec> B\<rbrakk> \<Longrightarrow> A - C \<noteq> 0"
 apply (unfold lesspoll_def)
 apply (fast dest!: Diff_eq_0_iff [THEN iffD1, THEN subset_imp_lepoll]
             intro!: eqpollI elim: notE
             elim!: eqpollE lepoll_trans)
 done
 
-theorem DC_WO3: "(\<forall>K. Card(K) \<longrightarrow> DC(K)) ==> WO3"
+theorem DC_WO3: "(\<forall>K. Card(K) \<longrightarrow> DC(K)) \<Longrightarrow> WO3"
 apply (unfold DC_def WO3_def)
 apply (rule allI)
 apply (case_tac "A \<prec> Hartog (A)")
@@ -527,17 +527,17 @@
 done
 
 (* ********************************************************************** *)
-(* WO1 ==> \<forall>K. Card(K) \<longrightarrow> DC(K)                                       *)
+(* WO1 \<Longrightarrow> \<forall>K. Card(K) \<longrightarrow> DC(K)                                       *)
 (* ********************************************************************** *)
 
 lemma images_eq:
-     "[| \<forall>x \<in> A. f`x=g`x; f \<in> Df->Cf; g \<in> Dg->Cg; A \<subseteq> Df; A \<subseteq> Dg |] 
-      ==> f``A = g``A"
+     "\<lbrakk>\<forall>x \<in> A. f`x=g`x; f \<in> Df->Cf; g \<in> Dg->Cg; A \<subseteq> Df; A \<subseteq> Dg\<rbrakk> 
+      \<Longrightarrow> f``A = g``A"
 apply (simp (no_asm_simp) add: image_fun)
 done
 
 lemma lam_images_eq:
-     "[| Ord(a); b \<in> a |] ==> (\<lambda>x \<in> a. h(x))``b = (\<lambda>x \<in> b. h(x))``b"
+     "\<lbrakk>Ord(a); b \<in> a\<rbrakk> \<Longrightarrow> (\<lambda>x \<in> a. h(x))``b = (\<lambda>x \<in> b. h(x))``b"
 apply (rule images_eq)
     apply (rule ballI)
     apply (drule OrdmemD [THEN subsetD], assumption+)
@@ -549,16 +549,16 @@
 by (fast intro!: lam_type RepFunI)
 
 lemma lemmaX:
-     "[| \<forall>Y \<in> Pow(X). Y \<prec> K \<longrightarrow> (\<exists>x \<in> X. <Y, x> \<in> R);   
-         b \<in> K; Z \<in> Pow(X); Z \<prec> K |]   
-      ==> {x \<in> X. <Z,x> \<in> R} \<noteq> 0"
+     "\<lbrakk>\<forall>Y \<in> Pow(X). Y \<prec> K \<longrightarrow> (\<exists>x \<in> X. <Y, x> \<in> R);   
+         b \<in> K; Z \<in> Pow(X); Z \<prec> K\<rbrakk>   
+      \<Longrightarrow> {x \<in> X. <Z,x> \<in> R} \<noteq> 0"
 by blast
 
 
 lemma WO1_DC_lemma:
-     "[| Card(K); well_ord(X,Q);   
-         \<forall>Y \<in> Pow(X). Y \<prec> K \<longrightarrow> (\<exists>x \<in> X. <Y, x> \<in> R); b \<in> K |]   
-      ==> ff(b, X, Q, R) \<in> {x \<in> X. <(\<lambda>c \<in> b. ff(c, X, Q, R))``b, x> \<in> R}"
+     "\<lbrakk>Card(K); well_ord(X,Q);   
+         \<forall>Y \<in> Pow(X). Y \<prec> K \<longrightarrow> (\<exists>x \<in> X. <Y, x> \<in> R); b \<in> K\<rbrakk>   
+      \<Longrightarrow> ff(b, X, Q, R) \<in> {x \<in> X. <(\<lambda>c \<in> b. ff(c, X, Q, R))``b, x> \<in> R}"
 apply (rule_tac P = "b \<in> K" in impE, (erule_tac [2] asm_rl)+)
 apply (rule_tac i=b in Card_is_Ord [THEN Ord_in_Ord, THEN trans_induct], 
        assumption+)
@@ -571,7 +571,7 @@
 apply (blast intro: lesspoll_trans1 in_Card_imp_lesspoll RepFun_lepoll)
 done
 
-theorem WO1_DC_Card: "WO1 ==> \<forall>K. Card(K) \<longrightarrow> DC(K)"
+theorem WO1_DC_Card: "WO1 \<Longrightarrow> \<forall>K. Card(K) \<longrightarrow> DC(K)"
 apply (unfold DC_def WO1_def)
 apply (rule allI impI)+
 apply (erule allE exE conjE)+