src/HOL/Word/Bit_Lists.thy
changeset 72081 e4d42f5766dc
parent 72079 8c355e2dd7db
--- a/src/HOL/Word/Bit_Lists.thy	Mon Aug 03 16:21:33 2020 +0200
+++ b/src/HOL/Word/Bit_Lists.thy	Tue Aug 04 09:24:00 2020 +0000
@@ -125,15 +125,6 @@
 lemma bl_of_nth_nth [simp]: "bl_of_nth (length xs) ((!) (rev xs)) = xs"
   by (simp add: bl_of_nth_nth_le)
 
-lemma takefill_bintrunc: "takefill False n bl = rev (bin_to_bl n (bl_to_bin (rev bl)))"
-  apply (rule nth_equalityI)
-   apply simp
-  apply (clarsimp simp: nth_takefill rev_nth nth_bin_to_bl bin_nth_of_bl)
-  done
-
-lemma bl_bin_bl_rtf: "bin_to_bl n (bl_to_bin bl) = rev (takefill False n (rev bl))"
-  by (simp add: takefill_bintrunc)
-
 
 subsection \<open>More\<close>
 
@@ -296,4 +287,671 @@
     rotate n (map2 f xs ys) = map2 f (rotate n xs) (rotate n ys)"
   by (induct n) (auto intro!: lth)
 
+
+subsection \<open>Explicit bit representation of \<^typ>\<open>int\<close>\<close>
+
+primrec bl_to_bin_aux :: "bool list \<Rightarrow> int \<Rightarrow> int"
+  where
+    Nil: "bl_to_bin_aux [] w = w"
+  | Cons: "bl_to_bin_aux (b # bs) w = bl_to_bin_aux bs (of_bool b + 2 * w)"
+
+definition bl_to_bin :: "bool list \<Rightarrow> int"
+  where "bl_to_bin bs = bl_to_bin_aux bs 0"
+
+primrec bin_to_bl_aux :: "nat \<Rightarrow> int \<Rightarrow> bool list \<Rightarrow> bool list"
+  where
+    Z: "bin_to_bl_aux 0 w bl = bl"
+  | Suc: "bin_to_bl_aux (Suc n) w bl = bin_to_bl_aux n (bin_rest w) ((bin_last w) # bl)"
+
+definition bin_to_bl :: "nat \<Rightarrow> int \<Rightarrow> bool list"
+  where "bin_to_bl n w = bin_to_bl_aux n w []"
+
+lemma bin_to_bl_aux_zero_minus_simp [simp]:
+  "0 < n \<Longrightarrow> bin_to_bl_aux n 0 bl = bin_to_bl_aux (n - 1) 0 (False # bl)"
+  by (cases n) auto
+
+lemma bin_to_bl_aux_minus1_minus_simp [simp]:
+  "0 < n \<Longrightarrow> bin_to_bl_aux n (- 1) bl = bin_to_bl_aux (n - 1) (- 1) (True # bl)"
+  by (cases n) auto
+
+lemma bin_to_bl_aux_one_minus_simp [simp]:
+  "0 < n \<Longrightarrow> bin_to_bl_aux n 1 bl = bin_to_bl_aux (n - 1) 0 (True # bl)"
+  by (cases n) auto
+
+lemma bin_to_bl_aux_Bit0_minus_simp [simp]:
+  "0 < n \<Longrightarrow>
+    bin_to_bl_aux n (numeral (Num.Bit0 w)) bl = bin_to_bl_aux (n - 1) (numeral w) (False # bl)"
+  by (cases n) simp_all
+
+lemma bin_to_bl_aux_Bit1_minus_simp [simp]:
+  "0 < n \<Longrightarrow>
+    bin_to_bl_aux n (numeral (Num.Bit1 w)) bl = bin_to_bl_aux (n - 1) (numeral w) (True # bl)"
+  by (cases n) simp_all
+
+lemma bl_to_bin_aux_append: "bl_to_bin_aux (bs @ cs) w = bl_to_bin_aux cs (bl_to_bin_aux bs w)"
+  by (induct bs arbitrary: w) auto
+
+lemma bin_to_bl_aux_append: "bin_to_bl_aux n w bs @ cs = bin_to_bl_aux n w (bs @ cs)"
+  by (induct n arbitrary: w bs) auto
+
+lemma bl_to_bin_append: "bl_to_bin (bs @ cs) = bl_to_bin_aux cs (bl_to_bin bs)"
+  unfolding bl_to_bin_def by (rule bl_to_bin_aux_append)
+
+lemma bin_to_bl_aux_alt: "bin_to_bl_aux n w bs = bin_to_bl n w @ bs"
+  by (simp add: bin_to_bl_def bin_to_bl_aux_append)
+
+lemma bin_to_bl_0 [simp]: "bin_to_bl 0 bs = []"
+  by (auto simp: bin_to_bl_def)
+
+lemma size_bin_to_bl_aux: "length (bin_to_bl_aux n w bs) = n + length bs"
+  by (induct n arbitrary: w bs) auto
+
+lemma size_bin_to_bl [simp]: "length (bin_to_bl n w) = n"
+  by (simp add: bin_to_bl_def size_bin_to_bl_aux)
+
+lemma bl_bin_bl': "bin_to_bl (n + length bs) (bl_to_bin_aux bs w) = bin_to_bl_aux n w bs"
+  apply (induct bs arbitrary: w n)
+   apply auto
+    apply (simp_all only: add_Suc [symmetric])
+    apply (auto simp add: bin_to_bl_def)
+  done
+
+lemma bl_bin_bl [simp]: "bin_to_bl (length bs) (bl_to_bin bs) = bs"
+  unfolding bl_to_bin_def
+  apply (rule box_equals)
+    apply (rule bl_bin_bl')
+   prefer 2
+   apply (rule bin_to_bl_aux.Z)
+  apply simp
+  done
+
+lemma bl_to_bin_inj: "bl_to_bin bs = bl_to_bin cs \<Longrightarrow> length bs = length cs \<Longrightarrow> bs = cs"
+  apply (rule_tac box_equals)
+    defer
+    apply (rule bl_bin_bl)
+   apply (rule bl_bin_bl)
+  apply simp
+  done
+
+lemma bl_to_bin_False [simp]: "bl_to_bin (False # bl) = bl_to_bin bl"
+  by (auto simp: bl_to_bin_def)
+
+lemma bl_to_bin_Nil [simp]: "bl_to_bin [] = 0"
+  by (auto simp: bl_to_bin_def)
+
+lemma bin_to_bl_zero_aux: "bin_to_bl_aux n 0 bl = replicate n False @ bl"
+  by (induct n arbitrary: bl) (auto simp: replicate_app_Cons_same)
+
+lemma bin_to_bl_zero: "bin_to_bl n 0 = replicate n False"
+  by (simp add: bin_to_bl_def bin_to_bl_zero_aux)
+
+lemma bin_to_bl_minus1_aux: "bin_to_bl_aux n (- 1) bl = replicate n True @ bl"
+  by (induct n arbitrary: bl) (auto simp: replicate_app_Cons_same)
+
+lemma bin_to_bl_minus1: "bin_to_bl n (- 1) = replicate n True"
+  by (simp add: bin_to_bl_def bin_to_bl_minus1_aux)
+
+
+subsection \<open>Semantic interpretation of \<^typ>\<open>bool list\<close> as \<^typ>\<open>int\<close>\<close>
+
+lemma bin_bl_bin': "bl_to_bin (bin_to_bl_aux n w bs) = bl_to_bin_aux bs (bintrunc n w)"
+  by (induct n arbitrary: w bs) (auto simp: bl_to_bin_def take_bit_Suc ac_simps mod_2_eq_odd)
+
+lemma bin_bl_bin [simp]: "bl_to_bin (bin_to_bl n w) = bintrunc n w"
+  by (auto simp: bin_to_bl_def bin_bl_bin')
+
+lemma bl_to_bin_rep_F: "bl_to_bin (replicate n False @ bl) = bl_to_bin bl"
+  by (simp add: bin_to_bl_zero_aux [symmetric] bin_bl_bin') (simp add: bl_to_bin_def)
+
+lemma bin_to_bl_trunc [simp]: "n \<le> m \<Longrightarrow> bin_to_bl n (bintrunc m w) = bin_to_bl n w"
+  by (auto intro: bl_to_bin_inj)
+
+lemma bin_to_bl_aux_bintr:
+  "bin_to_bl_aux n (bintrunc m bin) bl =
+    replicate (n - m) False @ bin_to_bl_aux (min n m) bin bl"
+  apply (induct n arbitrary: m bin bl)
+   apply clarsimp
+  apply clarsimp
+  apply (case_tac "m")
+   apply (clarsimp simp: bin_to_bl_zero_aux)
+   apply (erule thin_rl)
+   apply (induct_tac n)
+    apply (auto simp add: take_bit_Suc)
+  done
+
+lemma bin_to_bl_bintr:
+  "bin_to_bl n (bintrunc m bin) = replicate (n - m) False @ bin_to_bl (min n m) bin"
+  unfolding bin_to_bl_def by (rule bin_to_bl_aux_bintr)
+
+lemma bl_to_bin_rep_False: "bl_to_bin (replicate n False) = 0"
+  by (induct n) auto
+
+lemma len_bin_to_bl_aux: "length (bin_to_bl_aux n w bs) = n + length bs"
+  by (fact size_bin_to_bl_aux)
+
+lemma len_bin_to_bl: "length (bin_to_bl n w) = n"
+  by (fact size_bin_to_bl) (* FIXME: duplicate *)
+
+lemma sign_bl_bin': "bin_sign (bl_to_bin_aux bs w) = bin_sign w"
+  by (induction bs arbitrary: w) (simp_all add: bin_sign_def)
+
+lemma sign_bl_bin: "bin_sign (bl_to_bin bs) = 0"
+  by (simp add: bl_to_bin_def sign_bl_bin')
+
+lemma bl_sbin_sign_aux: "hd (bin_to_bl_aux (Suc n) w bs) = (bin_sign (sbintrunc n w) = -1)"
+  by (induction n arbitrary: w bs) (auto simp add: bin_sign_def even_iff_mod_2_eq_zero bit_Suc)
+
+lemma bl_sbin_sign: "hd (bin_to_bl (Suc n) w) = (bin_sign (sbintrunc n w) = -1)"
+  unfolding bin_to_bl_def by (rule bl_sbin_sign_aux)
+
+lemma bin_nth_of_bl_aux:
+  "bin_nth (bl_to_bin_aux bl w) n =
+    (n < size bl \<and> rev bl ! n \<or> n \<ge> length bl \<and> bin_nth w (n - size bl))"
+  apply (induction bl arbitrary: w)
+   apply simp_all
+  apply safe
+                      apply (simp_all add: not_le nth_append bit_double_iff even_bit_succ_iff split: if_splits)
+  done
+
+lemma bin_nth_of_bl: "bin_nth (bl_to_bin bl) n = (n < length bl \<and> rev bl ! n)"
+  by (simp add: bl_to_bin_def bin_nth_of_bl_aux)
+
+lemma bin_nth_bl: "n < m \<Longrightarrow> bin_nth w n = nth (rev (bin_to_bl m w)) n"
+  apply (induct n arbitrary: m w)
+   apply clarsimp
+   apply (case_tac m, clarsimp)
+   apply (clarsimp simp: bin_to_bl_def)
+   apply (simp add: bin_to_bl_aux_alt)
+  apply (case_tac m, clarsimp)
+  apply (clarsimp simp: bin_to_bl_def)
+  apply (simp add: bin_to_bl_aux_alt bit_Suc)
+  done
+
+lemma nth_bin_to_bl_aux:
+  "n < m + length bl \<Longrightarrow> (bin_to_bl_aux m w bl) ! n =
+    (if n < m then bit w (m - 1 - n) else bl ! (n - m))"
+  apply (induction bl arbitrary: w)
+   apply simp_all
+   apply (simp add: bin_nth_bl [of \<open>m - Suc n\<close> m] rev_nth flip: bin_to_bl_def)
+   apply (metis One_nat_def Suc_pred add_diff_cancel_left'
+     add_diff_cancel_right' bin_to_bl_aux_alt bin_to_bl_def
+     diff_Suc_Suc diff_is_0_eq diff_zero less_Suc_eq_0_disj
+     less_antisym less_imp_Suc_add list.size(3) nat_less_le nth_append size_bin_to_bl_aux)
+  done
+
+lemma nth_bin_to_bl: "n < m \<Longrightarrow> (bin_to_bl m w) ! n = bin_nth w (m - Suc n)"
+  by (simp add: bin_to_bl_def nth_bin_to_bl_aux)
+
+lemma takefill_bintrunc: "takefill False n bl = rev (bin_to_bl n (bl_to_bin (rev bl)))"
+  apply (rule nth_equalityI)
+   apply simp
+  apply (clarsimp simp: nth_takefill rev_nth nth_bin_to_bl bin_nth_of_bl)
+  done
+
+lemma bl_bin_bl_rtf: "bin_to_bl n (bl_to_bin bl) = rev (takefill False n (rev bl))"
+  by (simp add: takefill_bintrunc)
+
+lemma bl_to_bin_lt2p_aux: "bl_to_bin_aux bs w < (w + 1) * (2 ^ length bs)"
+proof (induction bs arbitrary: w)
+  case Nil
+  then show ?case
+    by simp
+next
+  case (Cons b bs)
+  from Cons.IH [of \<open>1 + 2 * w\<close>] Cons.IH [of \<open>2 * w\<close>]
+  show ?case
+    apply (auto simp add: algebra_simps)
+    apply (subst mult_2 [of \<open>2 ^ length bs\<close>])
+    apply (simp only: add.assoc)
+    apply (rule pos_add_strict)
+     apply simp_all
+    done
+qed
+
+lemma bl_to_bin_lt2p_drop: "bl_to_bin bs < 2 ^ length (dropWhile Not bs)"
+proof (induct bs)
+  case Nil
+  then show ?case by simp
+next
+  case (Cons b bs)
+  with bl_to_bin_lt2p_aux[where w=1] show ?case
+    by (simp add: bl_to_bin_def)
+qed
+
+lemma bl_to_bin_lt2p: "bl_to_bin bs < 2 ^ length bs"
+  by (metis bin_bl_bin bintr_lt2p bl_bin_bl)
+
+lemma bl_to_bin_ge2p_aux: "bl_to_bin_aux bs w \<ge> w * (2 ^ length bs)"
+proof (induction bs arbitrary: w)
+  case Nil
+  then show ?case
+    by simp
+next
+  case (Cons b bs)
+  from Cons.IH [of \<open>1 + 2 * w\<close>] Cons.IH [of \<open>2 * w\<close>]
+  show ?case
+    apply (auto simp add: algebra_simps)
+    apply (rule add_le_imp_le_left [of \<open>2 ^ length bs\<close>])
+    apply (rule add_increasing)
+    apply simp_all
+    done
+qed
+
+lemma bl_to_bin_ge0: "bl_to_bin bs \<ge> 0"
+  apply (unfold bl_to_bin_def)
+  apply (rule xtrans(4))
+   apply (rule bl_to_bin_ge2p_aux)
+  apply simp
+  done
+
+lemma butlast_rest_bin: "butlast (bin_to_bl n w) = bin_to_bl (n - 1) (bin_rest w)"
+  apply (unfold bin_to_bl_def)
+  apply (cases n, clarsimp)
+  apply clarsimp
+  apply (auto simp add: bin_to_bl_aux_alt)
+  done
+
+lemma butlast_bin_rest: "butlast bl = bin_to_bl (length bl - Suc 0) (bin_rest (bl_to_bin bl))"
+  using butlast_rest_bin [where w="bl_to_bin bl" and n="length bl"] by simp
+
+lemma butlast_rest_bl2bin_aux:
+  "bl \<noteq> [] \<Longrightarrow> bl_to_bin_aux (butlast bl) w = bin_rest (bl_to_bin_aux bl w)"
+  by (induct bl arbitrary: w) auto
+
+lemma butlast_rest_bl2bin: "bl_to_bin (butlast bl) = bin_rest (bl_to_bin bl)"
+  by (cases bl) (auto simp: bl_to_bin_def butlast_rest_bl2bin_aux)
+
+lemma trunc_bl2bin_aux:
+  "bintrunc m (bl_to_bin_aux bl w) =
+    bl_to_bin_aux (drop (length bl - m) bl) (bintrunc (m - length bl) w)"
+proof (induct bl arbitrary: w)
+  case Nil
+  show ?case by simp
+next
+  case (Cons b bl)
+  show ?case
+  proof (cases "m - length bl")
+    case 0
+    then have "Suc (length bl) - m = Suc (length bl - m)" by simp
+    with Cons show ?thesis by simp
+  next
+    case (Suc n)
+    then have "m - Suc (length bl) = n" by simp
+    with Cons Suc show ?thesis by (simp add: take_bit_Suc ac_simps)
+  qed
+qed
+
+lemma trunc_bl2bin: "bintrunc m (bl_to_bin bl) = bl_to_bin (drop (length bl - m) bl)"
+  by (simp add: bl_to_bin_def trunc_bl2bin_aux)
+
+lemma trunc_bl2bin_len [simp]: "bintrunc (length bl) (bl_to_bin bl) = bl_to_bin bl"
+  by (simp add: trunc_bl2bin)
+
+lemma bl2bin_drop: "bl_to_bin (drop k bl) = bintrunc (length bl - k) (bl_to_bin bl)"
+  apply (rule trans)
+   prefer 2
+   apply (rule trunc_bl2bin [symmetric])
+  apply (cases "k \<le> length bl")
+   apply auto
+  done
+
+lemma take_rest_power_bin: "m \<le> n \<Longrightarrow> take m (bin_to_bl n w) = bin_to_bl m ((bin_rest ^^ (n - m)) w)"
+  apply (rule nth_equalityI)
+   apply simp
+  apply (clarsimp simp add: nth_bin_to_bl nth_rest_power_bin)
+  done
+
+lemma last_bin_last': "size xs > 0 \<Longrightarrow> last xs \<longleftrightarrow> bin_last (bl_to_bin_aux xs w)"
+  by (induct xs arbitrary: w) auto
+
+lemma last_bin_last: "size xs > 0 \<Longrightarrow> last xs \<longleftrightarrow> bin_last (bl_to_bin xs)"
+  unfolding bl_to_bin_def by (erule last_bin_last')
+
+lemma bin_last_last: "bin_last w \<longleftrightarrow> last (bin_to_bl (Suc n) w)"
+  by (simp add: bin_to_bl_def) (auto simp: bin_to_bl_aux_alt)
+
+lemma drop_bin2bl_aux:
+  "drop m (bin_to_bl_aux n bin bs) =
+    bin_to_bl_aux (n - m) bin (drop (m - n) bs)"
+  apply (induction n arbitrary: m bin bs)
+   apply auto
+  apply (case_tac "m \<le> n")
+   apply (auto simp add: not_le Suc_diff_le)
+  apply (case_tac "m - n")
+   apply auto
+  apply (use Suc_diff_Suc in fastforce)
+  done
+
+lemma drop_bin2bl: "drop m (bin_to_bl n bin) = bin_to_bl (n - m) bin"
+  by (simp add: bin_to_bl_def drop_bin2bl_aux)
+
+lemma take_bin2bl_lem1: "take m (bin_to_bl_aux m w bs) = bin_to_bl m w"
+  apply (induct m arbitrary: w bs)
+   apply clarsimp
+  apply clarsimp
+  apply (simp add: bin_to_bl_aux_alt)
+  apply (simp add: bin_to_bl_def)
+  apply (simp add: bin_to_bl_aux_alt)
+  done
+
+lemma take_bin2bl_lem: "take m (bin_to_bl_aux (m + n) w bs) = take m (bin_to_bl (m + n) w)"
+  by (induct n arbitrary: w bs) (simp_all (no_asm) add: bin_to_bl_def take_bin2bl_lem1, simp)
+
+lemma bin_split_take: "bin_split n c = (a, b) \<Longrightarrow> bin_to_bl m a = take m (bin_to_bl (m + n) c)"
+  apply (induct n arbitrary: b c)
+   apply clarsimp
+  apply (clarsimp simp: Let_def split: prod.split_asm)
+  apply (simp add: bin_to_bl_def)
+  apply (simp add: take_bin2bl_lem drop_bit_Suc)
+  done
+
+lemma bin_to_bl_drop_bit:
+  "k = m + n \<Longrightarrow> bin_to_bl m (drop_bit n c) = take m (bin_to_bl k c)"
+  using bin_split_take by simp
+
+lemma bin_split_take1:
+  "k = m + n \<Longrightarrow> bin_split n c = (a, b) \<Longrightarrow> bin_to_bl m a = take m (bin_to_bl k c)"
+  using bin_split_take by simp
+
+lemma bl_bin_bl_rep_drop:
+  "bin_to_bl n (bl_to_bin bl) =
+    replicate (n - length bl) False @ drop (length bl - n) bl"
+  by (simp add: bl_to_bin_inj bl_to_bin_rep_F trunc_bl2bin)
+
+lemma bl_to_bin_aux_cat:
+  "bl_to_bin_aux bs (bin_cat w nv v) =
+    bin_cat w (nv + length bs) (bl_to_bin_aux bs v)"
+  by (rule bit_eqI)
+    (auto simp add: bin_nth_of_bl_aux bin_nth_cat algebra_simps)
+
+lemma bin_to_bl_aux_cat:
+  "bin_to_bl_aux (nv + nw) (bin_cat v nw w) bs =
+    bin_to_bl_aux nv v (bin_to_bl_aux nw w bs)"
+  by (induction nw arbitrary: w bs) (simp_all add: concat_bit_Suc)
+
+lemma bl_to_bin_aux_alt: "bl_to_bin_aux bs w = bin_cat w (length bs) (bl_to_bin bs)"
+  using bl_to_bin_aux_cat [where nv = "0" and v = "0"]
+  by (simp add: bl_to_bin_def [symmetric])
+
+lemma bin_to_bl_cat:
+  "bin_to_bl (nv + nw) (bin_cat v nw w) =
+    bin_to_bl_aux nv v (bin_to_bl nw w)"
+  by (simp add: bin_to_bl_def bin_to_bl_aux_cat)
+
+lemmas bl_to_bin_aux_app_cat =
+  trans [OF bl_to_bin_aux_append bl_to_bin_aux_alt]
+
+lemmas bin_to_bl_aux_cat_app =
+  trans [OF bin_to_bl_aux_cat bin_to_bl_aux_alt]
+
+lemma bl_to_bin_app_cat:
+  "bl_to_bin (bsa @ bs) = bin_cat (bl_to_bin bsa) (length bs) (bl_to_bin bs)"
+  by (simp only: bl_to_bin_aux_app_cat bl_to_bin_def)
+
+lemma bin_to_bl_cat_app:
+  "bin_to_bl (n + nw) (bin_cat w nw wa) = bin_to_bl n w @ bin_to_bl nw wa"
+  by (simp only: bin_to_bl_def bin_to_bl_aux_cat_app)
+
+text \<open>\<open>bl_to_bin_app_cat_alt\<close> and \<open>bl_to_bin_app_cat\<close> are easily interderivable.\<close>
+lemma bl_to_bin_app_cat_alt: "bin_cat (bl_to_bin cs) n w = bl_to_bin (cs @ bin_to_bl n w)"
+  by (simp add: bl_to_bin_app_cat)
+
+lemma mask_lem: "(bl_to_bin (True # replicate n False)) = bl_to_bin (replicate n True) + 1"
+  apply (unfold bl_to_bin_def)
+  apply (induct n)
+   apply simp
+  apply (simp only: Suc_eq_plus1 replicate_add append_Cons [symmetric] bl_to_bin_aux_append)
+  apply simp
+  done
+
+lemma bin_exhaust:
+  "(\<And>x b. bin = of_bool b + 2 * x \<Longrightarrow> Q) \<Longrightarrow> Q" for bin :: int
+  apply (cases \<open>even bin\<close>)
+   apply (auto elim!: evenE oddE)
+   apply fastforce
+  apply fastforce
+  done
+
+primrec rbl_succ :: "bool list \<Rightarrow> bool list"
+  where
+    Nil: "rbl_succ Nil = Nil"
+  | Cons: "rbl_succ (x # xs) = (if x then False # rbl_succ xs else True # xs)"
+
+primrec rbl_pred :: "bool list \<Rightarrow> bool list"
+  where
+    Nil: "rbl_pred Nil = Nil"
+  | Cons: "rbl_pred (x # xs) = (if x then False # xs else True # rbl_pred xs)"
+
+primrec rbl_add :: "bool list \<Rightarrow> bool list \<Rightarrow> bool list"
+  where \<comment> \<open>result is length of first arg, second arg may be longer\<close>
+    Nil: "rbl_add Nil x = Nil"
+  | Cons: "rbl_add (y # ys) x =
+      (let ws = rbl_add ys (tl x)
+       in (y \<noteq> hd x) # (if hd x \<and> y then rbl_succ ws else ws))"
+
+primrec rbl_mult :: "bool list \<Rightarrow> bool list \<Rightarrow> bool list"
+  where \<comment> \<open>result is length of first arg, second arg may be longer\<close>
+    Nil: "rbl_mult Nil x = Nil"
+  | Cons: "rbl_mult (y # ys) x =
+      (let ws = False # rbl_mult ys x
+       in if y then rbl_add ws x else ws)"
+
+lemma size_rbl_pred: "length (rbl_pred bl) = length bl"
+  by (induct bl) auto
+
+lemma size_rbl_succ: "length (rbl_succ bl) = length bl"
+  by (induct bl) auto
+
+lemma size_rbl_add: "length (rbl_add bl cl) = length bl"
+  by (induct bl arbitrary: cl) (auto simp: Let_def size_rbl_succ)
+
+lemma size_rbl_mult: "length (rbl_mult bl cl) = length bl"
+  by (induct bl arbitrary: cl) (auto simp add: Let_def size_rbl_add)
+
+lemmas rbl_sizes [simp] =
+  size_rbl_pred size_rbl_succ size_rbl_add size_rbl_mult
+
+lemmas rbl_Nils =
+  rbl_pred.Nil rbl_succ.Nil rbl_add.Nil rbl_mult.Nil
+
+lemma rbl_add_app2: "length blb \<ge> length bla \<Longrightarrow> rbl_add bla (blb @ blc) = rbl_add bla blb"
+  apply (induct bla arbitrary: blb)
+   apply simp
+  apply clarsimp
+  apply (case_tac blb, clarsimp)
+  apply (clarsimp simp: Let_def)
+  done
+
+lemma rbl_add_take2:
+  "length blb \<ge> length bla \<Longrightarrow> rbl_add bla (take (length bla) blb) = rbl_add bla blb"
+  apply (induct bla arbitrary: blb)
+   apply simp
+  apply clarsimp
+  apply (case_tac blb, clarsimp)
+  apply (clarsimp simp: Let_def)
+  done
+
+lemma rbl_mult_app2: "length blb \<ge> length bla \<Longrightarrow> rbl_mult bla (blb @ blc) = rbl_mult bla blb"
+  apply (induct bla arbitrary: blb)
+   apply simp
+  apply clarsimp
+  apply (case_tac blb, clarsimp)
+  apply (clarsimp simp: Let_def rbl_add_app2)
+  done
+
+lemma rbl_mult_take2:
+  "length blb \<ge> length bla \<Longrightarrow> rbl_mult bla (take (length bla) blb) = rbl_mult bla blb"
+  apply (rule trans)
+   apply (rule rbl_mult_app2 [symmetric])
+   apply simp
+  apply (rule_tac f = "rbl_mult bla" in arg_cong)
+  apply (rule append_take_drop_id)
+  done
+
+lemma rbl_add_split:
+  "P (rbl_add (y # ys) (x # xs)) =
+    (\<forall>ws. length ws = length ys \<longrightarrow> ws = rbl_add ys xs \<longrightarrow>
+      (y \<longrightarrow> ((x \<longrightarrow> P (False # rbl_succ ws)) \<and> (\<not> x \<longrightarrow> P (True # ws)))) \<and>
+      (\<not> y \<longrightarrow> P (x # ws)))"
+  by (cases y) (auto simp: Let_def)
+
+lemma rbl_mult_split:
+  "P (rbl_mult (y # ys) xs) =
+    (\<forall>ws. length ws = Suc (length ys) \<longrightarrow> ws = False # rbl_mult ys xs \<longrightarrow>
+      (y \<longrightarrow> P (rbl_add ws xs)) \<and> (\<not> y \<longrightarrow> P ws))"
+  by (auto simp: Let_def)
+
+lemma rbl_pred: "rbl_pred (rev (bin_to_bl n bin)) = rev (bin_to_bl n (bin - 1))"
+proof (unfold bin_to_bl_def, induction n arbitrary: bin)
+  case 0
+  then show ?case
+    by simp
+next
+  case (Suc n)
+  obtain b k where \<open>bin = of_bool b + 2 * k\<close>
+    using bin_exhaust by blast
+  moreover have \<open>(2 * k - 1) div 2 = k - 1\<close>
+    using even_succ_div_2 [of \<open>2 * (k - 1)\<close>] 
+    by simp
+  ultimately show ?case
+    using Suc [of \<open>bin div 2\<close>]
+    by simp (simp add: bin_to_bl_aux_alt)
+qed
+
+lemma rbl_succ: "rbl_succ (rev (bin_to_bl n bin)) = rev (bin_to_bl n (bin + 1))"
+  apply (unfold bin_to_bl_def)
+  apply (induction n arbitrary: bin)
+   apply simp_all
+  apply (case_tac bin rule: bin_exhaust)
+  apply simp
+  apply (simp add: bin_to_bl_aux_alt ac_simps)
+  done
+
+lemma rbl_add:
+  "\<And>bina binb. rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) =
+    rev (bin_to_bl n (bina + binb))"
+  apply (unfold bin_to_bl_def)
+  apply (induct n)
+   apply simp
+  apply clarsimp
+  apply (case_tac bina rule: bin_exhaust)
+  apply (case_tac binb rule: bin_exhaust)
+  apply (case_tac b)
+   apply (case_tac [!] "ba")
+     apply (auto simp: rbl_succ bin_to_bl_aux_alt Let_def ac_simps)
+  done
+
+lemma rbl_add_long:
+  "m \<ge> n \<Longrightarrow> rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) =
+    rev (bin_to_bl n (bina + binb))"
+  apply (rule box_equals [OF _ rbl_add_take2 rbl_add])
+   apply (rule_tac f = "rbl_add (rev (bin_to_bl n bina))" in arg_cong)
+   apply (rule rev_swap [THEN iffD1])
+   apply (simp add: rev_take drop_bin2bl)
+  apply simp
+  done
+
+lemma rbl_mult_gt1:
+  "m \<ge> length bl \<Longrightarrow>
+    rbl_mult bl (rev (bin_to_bl m binb)) =
+    rbl_mult bl (rev (bin_to_bl (length bl) binb))"
+  apply (rule trans)
+   apply (rule rbl_mult_take2 [symmetric])
+   apply simp_all
+  apply (rule_tac f = "rbl_mult bl" in arg_cong)
+  apply (rule rev_swap [THEN iffD1])
+  apply (simp add: rev_take drop_bin2bl)
+  done
+
+lemma rbl_mult_gt:
+  "m > n \<Longrightarrow>
+    rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) =
+    rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb))"
+  by (auto intro: trans [OF rbl_mult_gt1])
+
+lemmas rbl_mult_Suc = lessI [THEN rbl_mult_gt]
+
+lemma rbbl_Cons: "b # rev (bin_to_bl n x) = rev (bin_to_bl (Suc n) (of_bool b + 2 * x))"
+  by (simp add: bin_to_bl_def) (simp add: bin_to_bl_aux_alt)
+
+lemma rbl_mult:
+  "rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) =
+    rev (bin_to_bl n (bina * binb))"
+  apply (induct n arbitrary: bina binb)
+   apply simp_all
+  apply (unfold bin_to_bl_def)
+  apply clarsimp
+  apply (case_tac bina rule: bin_exhaust)
+  apply (case_tac binb rule: bin_exhaust)
+  apply simp
+  apply (simp add: bin_to_bl_aux_alt)
+  apply (simp add: rbbl_Cons rbl_mult_Suc rbl_add algebra_simps)
+  done
+
+lemma sclem: "size (concat (map (bin_to_bl n) xs)) = length xs * n"
+  by (induct xs) auto
+
+lemma bin_cat_foldl_lem:
+  "foldl (\<lambda>u. bin_cat u n) x xs =
+    bin_cat x (size xs * n) (foldl (\<lambda>u. bin_cat u n) y xs)"
+  apply (induct xs arbitrary: x)
+   apply simp
+  apply (simp (no_asm))
+  apply (frule asm_rl)
+  apply (drule meta_spec)
+  apply (erule trans)
+  apply (drule_tac x = "bin_cat y n a" in meta_spec)
+  apply (simp add: bin_cat_assoc_sym min.absorb2)
+  done
+
+lemma bin_rcat_bl: "bin_rcat n wl = bl_to_bin (concat (map (bin_to_bl n) wl))"
+  apply (unfold bin_rcat_def)
+  apply (rule sym)
+  apply (induct wl)
+   apply (auto simp add: bl_to_bin_append)
+  apply (simp add: bl_to_bin_aux_alt sclem)
+  apply (simp add: bin_cat_foldl_lem [symmetric])
+  done
+
+lemma bin_last_bl_to_bin: "bin_last (bl_to_bin bs) \<longleftrightarrow> bs \<noteq> [] \<and> last bs"
+by(cases "bs = []")(auto simp add: bl_to_bin_def last_bin_last'[where w=0])
+
+lemma bin_rest_bl_to_bin: "bin_rest (bl_to_bin bs) = bl_to_bin (butlast bs)"
+by(cases "bs = []")(simp_all add: bl_to_bin_def butlast_rest_bl2bin_aux)
+
+lemma bl_xor_aux_bin:
+  "map2 (\<lambda>x y. x \<noteq> y) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) =
+    bin_to_bl_aux n (v XOR w) (map2 (\<lambda>x y. x \<noteq> y) bs cs)"
+  apply (induction n arbitrary: v w bs cs)
+   apply auto
+  apply (case_tac v rule: bin_exhaust)
+  apply (case_tac w rule: bin_exhaust)
+  apply clarsimp
+  done
+
+lemma bl_or_aux_bin:
+  "map2 (\<or>) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) =
+    bin_to_bl_aux n (v OR w) (map2 (\<or>) bs cs)"
+  by (induct n arbitrary: v w bs cs) simp_all
+
+lemma bl_and_aux_bin:
+  "map2 (\<and>) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) =
+    bin_to_bl_aux n (v AND w) (map2 (\<and>) bs cs)"
+  by (induction n arbitrary: v w bs cs) simp_all
+
+lemma bl_not_aux_bin: "map Not (bin_to_bl_aux n w cs) = bin_to_bl_aux n (NOT w) (map Not cs)"
+  by (induct n arbitrary: w cs) auto
+
+lemma bl_not_bin: "map Not (bin_to_bl n w) = bin_to_bl n (NOT w)"
+  by (simp add: bin_to_bl_def bl_not_aux_bin)
+
+lemma bl_and_bin: "map2 (\<and>) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v AND w)"
+  by (simp add: bin_to_bl_def bl_and_aux_bin)
+
+lemma bl_or_bin: "map2 (\<or>) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v OR w)"
+  by (simp add: bin_to_bl_def bl_or_aux_bin)
+
+lemma bl_xor_bin: "map2 (\<noteq>) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v XOR w)"
+  using bl_xor_aux_bin by (simp add: bin_to_bl_def)
+
 end