src/HOL/Library/Bit.thy
changeset 70342 e4d626692640
parent 70341 972c0c744e7c
child 70343 e54caaa38ad9
--- a/src/HOL/Library/Bit.thy	Fri Jun 14 08:34:27 2019 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,174 +0,0 @@
-(*  Title:      HOL/Library/Bit.thy
-    Author:     Brian Huffman
-*)
-
-section \<open>The Field of Integers mod 2\<close>
-
-theory Bit
-imports Main
-begin
-
-subsection \<open>Bits as a datatype\<close>
-
-typedef bit = "UNIV :: bool set"
-  morphisms set Bit ..
-
-instantiation bit :: "{zero, one}"
-begin
-
-definition zero_bit_def: "0 = Bit False"
-
-definition one_bit_def: "1 = Bit True"
-
-instance ..
-
-end
-
-old_rep_datatype "0::bit" "1::bit"
-proof -
-  fix P :: "bit \<Rightarrow> bool"
-  fix x :: bit
-  assume "P 0" and "P 1"
-  then have "\<forall>b. P (Bit b)"
-    unfolding zero_bit_def one_bit_def
-    by (simp add: all_bool_eq)
-  then show "P x"
-    by (induct x) simp
-next
-  show "(0::bit) \<noteq> (1::bit)"
-    unfolding zero_bit_def one_bit_def
-    by (simp add: Bit_inject)
-qed
-
-lemma Bit_set_eq [simp]: "Bit (set b) = b"
-  by (fact set_inverse)
-
-lemma set_Bit_eq [simp]: "set (Bit P) = P"
-  by (rule Bit_inverse) rule
-
-lemma bit_eq_iff: "x = y \<longleftrightarrow> (set x \<longleftrightarrow> set y)"
-  by (auto simp add: set_inject)
-
-lemma Bit_inject [simp]: "Bit P = Bit Q \<longleftrightarrow> (P \<longleftrightarrow> Q)"
-  by (auto simp add: Bit_inject)
-
-lemma set [iff]:
-  "\<not> set 0"
-  "set 1"
-  by (simp_all add: zero_bit_def one_bit_def Bit_inverse)
-
-lemma [code]:
-  "set 0 \<longleftrightarrow> False"
-  "set 1 \<longleftrightarrow> True"
-  by simp_all
-
-lemma set_iff: "set b \<longleftrightarrow> b = 1"
-  by (cases b) simp_all
-
-lemma bit_eq_iff_set:
-  "b = 0 \<longleftrightarrow> \<not> set b"
-  "b = 1 \<longleftrightarrow> set b"
-  by (simp_all add: bit_eq_iff)
-
-lemma Bit [simp, code]:
-  "Bit False = 0"
-  "Bit True = 1"
-  by (simp_all add: zero_bit_def one_bit_def)
-
-lemma bit_not_0_iff [iff]: "x \<noteq> 0 \<longleftrightarrow> x = 1" for x :: bit
-  by (simp add: bit_eq_iff)
-
-lemma bit_not_1_iff [iff]: "x \<noteq> 1 \<longleftrightarrow> x = 0" for x :: bit
-  by (simp add: bit_eq_iff)
-
-lemma [code]:
-  "HOL.equal 0 b \<longleftrightarrow> \<not> set b"
-  "HOL.equal 1 b \<longleftrightarrow> set b"
-  by (simp_all add: equal set_iff)
-
-
-subsection \<open>Type \<^typ>\<open>bit\<close> forms a field\<close>
-
-instantiation bit :: field
-begin
-
-definition plus_bit_def: "x + y = case_bit y (case_bit 1 0 y) x"
-
-definition times_bit_def: "x * y = case_bit 0 y x"
-
-definition uminus_bit_def [simp]: "- x = x" for x :: bit
-
-definition minus_bit_def [simp]: "x - y = x + y" for x y :: bit
-
-definition inverse_bit_def [simp]: "inverse x = x" for x :: bit
-
-definition divide_bit_def [simp]: "x div y = x * y" for x y :: bit
-
-lemmas field_bit_defs =
-  plus_bit_def times_bit_def minus_bit_def uminus_bit_def
-  divide_bit_def inverse_bit_def
-
-instance
-  by standard (auto simp: field_bit_defs split: bit.split)
-
-end
-
-lemma bit_add_self: "x + x = 0" for x :: bit
-  unfolding plus_bit_def by (simp split: bit.split)
-
-lemma bit_mult_eq_1_iff [simp]: "x * y = 1 \<longleftrightarrow> x = 1 \<and> y = 1" for x y :: bit
-  unfolding times_bit_def by (simp split: bit.split)
-
-text \<open>Not sure whether the next two should be simp rules.\<close>
-
-lemma bit_add_eq_0_iff: "x + y = 0 \<longleftrightarrow> x = y" for x y :: bit
-  unfolding plus_bit_def by (simp split: bit.split)
-
-lemma bit_add_eq_1_iff: "x + y = 1 \<longleftrightarrow> x \<noteq> y" for x y :: bit
-  unfolding plus_bit_def by (simp split: bit.split)
-
-
-subsection \<open>Numerals at type \<^typ>\<open>bit\<close>\<close>
-
-text \<open>All numerals reduce to either 0 or 1.\<close>
-
-lemma bit_minus1 [simp]: "- 1 = (1 :: bit)"
-  by (simp only: uminus_bit_def)
-
-lemma bit_neg_numeral [simp]: "(- numeral w :: bit) = numeral w"
-  by (simp only: uminus_bit_def)
-
-lemma bit_numeral_even [simp]: "numeral (Num.Bit0 w) = (0 :: bit)"
-  by (simp only: numeral_Bit0 bit_add_self)
-
-lemma bit_numeral_odd [simp]: "numeral (Num.Bit1 w) = (1 :: bit)"
-  by (simp only: numeral_Bit1 bit_add_self add_0_left)
-
-
-subsection \<open>Conversion from \<^typ>\<open>bit\<close>\<close>
-
-context zero_neq_one
-begin
-
-definition of_bit :: "bit \<Rightarrow> 'a"
-  where "of_bit b = case_bit 0 1 b"
-
-lemma of_bit_eq [simp, code]:
-  "of_bit 0 = 0"
-  "of_bit 1 = 1"
-  by (simp_all add: of_bit_def)
-
-lemma of_bit_eq_iff: "of_bit x = of_bit y \<longleftrightarrow> x = y"
-  by (cases x) (cases y; simp)+
-
-end
-
-lemma (in semiring_1) of_nat_of_bit_eq: "of_nat (of_bit b) = of_bit b"
-  by (cases b) simp_all
-
-lemma (in ring_1) of_int_of_bit_eq: "of_int (of_bit b) = of_bit b"
-  by (cases b) simp_all
-
-hide_const (open) set
-
-end