src/HOL/CTL/CTL.thy
changeset 15871 e524119dbf19
parent 15870 4320bce5873f
child 15872 8336ff711d80
--- a/src/HOL/CTL/CTL.thy	Thu Apr 28 12:04:34 2005 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,310 +0,0 @@
-
-theory CTL = Main:
-
-section {* CTL formulae *}
-
-text {*
-  We formalize basic concepts of Computational Tree Logic (CTL)
-  \cite{McMillan-PhDThesis,McMillan-LectureNotes} within the
-  simply-typed set theory of HOL.
-
-  By using the common technique of ``shallow embedding'', a CTL
-  formula is identified with the corresponding set of states where it
-  holds.  Consequently, CTL operations such as negation, conjunction,
-  disjunction simply become complement, intersection, union of sets.
-  We only require a separate operation for implication, as point-wise
-  inclusion is usually not encountered in plain set-theory.
-*}
-
-lemmas [intro!] = Int_greatest Un_upper2 Un_upper1 Int_lower1 Int_lower2
-
-types 'a ctl = "'a set"
-constdefs
-  imp :: "'a ctl \<Rightarrow> 'a ctl \<Rightarrow> 'a ctl"    (infixr "\<rightarrow>" 75)
-  "p \<rightarrow> q \<equiv> - p \<union> q"
-
-lemma [intro!]: "p \<inter> p \<rightarrow> q \<subseteq> q" by (unfold imp_def) auto
-lemma [intro!]: "p \<subseteq> (q \<rightarrow> p)" by (unfold imp_def) rule
-
-
-text {*
-  \smallskip The CTL path operators are more interesting; they are
-  based on an arbitrary, but fixed model @{text \<M>}, which is simply
-  a transition relation over states @{typ "'a"}.
-*}
-
-consts model :: "('a \<times> 'a) set"    ("\<M>")
-
-text {*
-  The operators @{text \<EX>}, @{text \<EF>}, @{text \<EG>} are taken
-  as primitives, while @{text \<AX>}, @{text \<AF>}, @{text \<AG>} are
-  defined as derived ones.  The formula @{text "\<EX> p"} holds in a
-  state @{term s}, iff there is a successor state @{term s'} (with
-  respect to the model @{term \<M>}), such that @{term p} holds in
-  @{term s'}.  The formula @{text "\<EF> p"} holds in a state @{term
-  s}, iff there is a path in @{text \<M>}, starting from @{term s},
-  such that there exists a state @{term s'} on the path, such that
-  @{term p} holds in @{term s'}.  The formula @{text "\<EG> p"} holds
-  in a state @{term s}, iff there is a path, starting from @{term s},
-  such that for all states @{term s'} on the path, @{term p} holds in
-  @{term s'}.  It is easy to see that @{text "\<EF> p"} and @{text
-  "\<EG> p"} may be expressed using least and greatest fixed points
-  \cite{McMillan-PhDThesis}.
-*}
-
-constdefs
-  EX :: "'a ctl \<Rightarrow> 'a ctl"    ("\<EX> _" [80] 90)    "\<EX> p \<equiv> {s. \<exists>s'. (s, s') \<in> \<M> \<and> s' \<in> p}"
-  EF :: "'a ctl \<Rightarrow> 'a ctl"    ("\<EF> _" [80] 90)    "\<EF> p \<equiv> lfp (\<lambda>s. p \<union> \<EX> s)"
-  EG :: "'a ctl \<Rightarrow> 'a ctl"    ("\<EG> _" [80] 90)    "\<EG> p \<equiv> gfp (\<lambda>s. p \<inter> \<EX> s)"
-
-text {*
-  @{text "\<AX>"}, @{text "\<AF>"} and @{text "\<AG>"} are now defined
-  dually in terms of @{text "\<EX>"}, @{text "\<EF>"} and @{text
-  "\<EG>"}.
-*}
-
-constdefs
-  AX :: "'a ctl \<Rightarrow> 'a ctl"    ("\<AX> _" [80] 90)    "\<AX> p \<equiv> - \<EX> - p"
-  AF :: "'a ctl \<Rightarrow> 'a ctl"    ("\<AF> _" [80] 90)    "\<AF> p \<equiv> - \<EG> - p"
-  AG :: "'a ctl \<Rightarrow> 'a ctl"    ("\<AG> _" [80] 90)    "\<AG> p \<equiv> - \<EF> - p"
-
-lemmas [simp] = EX_def EG_def AX_def EF_def AF_def AG_def
-
-
-section {* Basic fixed point properties *}
-
-text {*
-  First of all, we use the de-Morgan property of fixed points
-*}
-
-lemma lfp_gfp: "lfp f = - gfp (\<lambda>s . - (f (- s)))"
-proof
-  show "lfp f \<subseteq> - gfp (\<lambda>s. - f (- s))"
-  proof
-    fix x assume l: "x \<in> lfp f"
-    show "x \<in> - gfp (\<lambda>s. - f (- s))"
-    proof
-      assume "x \<in> gfp (\<lambda>s. - f (- s))"
-      then obtain u where "x \<in> u" and "u \<subseteq> - f (- u)" by (unfold gfp_def) auto
-      then have "f (- u) \<subseteq> - u" by auto
-      then have "lfp f \<subseteq> - u" by (rule lfp_lowerbound)
-      from l and this have "x \<notin> u" by auto
-      then show False by contradiction
-    qed
-  qed
-  show "- gfp (\<lambda>s. - f (- s)) \<subseteq> lfp f"
-  proof (rule lfp_greatest)
-    fix u assume "f u \<subseteq> u"
-    then have "- u \<subseteq> - f u" by auto
-    then have "- u \<subseteq> - f (- (- u))" by simp
-    then have "- u \<subseteq> gfp (\<lambda>s. - f (- s))" by (rule gfp_upperbound)
-    then show "- gfp (\<lambda>s. - f (- s)) \<subseteq> u" by auto
-  qed
-qed
-
-lemma lfp_gfp': "- lfp f = gfp (\<lambda>s. - (f (- s)))"
-  by (simp add: lfp_gfp)
-
-lemma gfp_lfp': "- gfp f = lfp (\<lambda>s. - (f (- s)))"
-  by (simp add: lfp_gfp)
-
-text {*
-  in order to give dual fixed point representations of @{term "AF p"}
-  and @{term "AG p"}:
-*}
-
-lemma AF_lfp: "\<AF> p = lfp (\<lambda>s. p \<union> \<AX> s)" by (simp add: lfp_gfp)
-lemma AG_gfp: "\<AG> p = gfp (\<lambda>s. p \<inter> \<AX> s)" by (simp add: lfp_gfp)
-
-lemma EF_fp: "\<EF> p = p \<union> \<EX> \<EF> p"
-proof -
-  have "mono (\<lambda>s. p \<union> \<EX> s)" by rule (auto simp add: EX_def)
-  then show ?thesis by (simp only: EF_def) (rule lfp_unfold)
-qed
-
-lemma AF_fp: "\<AF> p = p \<union> \<AX> \<AF> p"
-proof -
-  have "mono (\<lambda>s. p \<union> \<AX> s)" by rule (auto simp add: AX_def EX_def)
-  then show ?thesis by (simp only: AF_lfp) (rule lfp_unfold)
-qed
-
-lemma EG_fp: "\<EG> p = p \<inter> \<EX> \<EG> p"
-proof -
-  have "mono (\<lambda>s. p \<inter> \<EX> s)" by rule (auto simp add: EX_def)
-  then show ?thesis by (simp only: EG_def) (rule gfp_unfold)
-qed
-
-text {*
-  From the greatest fixed point definition of @{term "\<AG> p"}, we
-  derive as a consequence of the Knaster-Tarski theorem on the one
-  hand that @{term "\<AG> p"} is a fixed point of the monotonic
-  function @{term "\<lambda>s. p \<inter> \<AX> s"}.
-*}
-
-lemma AG_fp: "\<AG> p = p \<inter> \<AX> \<AG> p"
-proof -
-  have "mono (\<lambda>s. p \<inter> \<AX> s)" by rule (auto simp add: AX_def EX_def)
-  then show ?thesis by (simp only: AG_gfp) (rule gfp_unfold)
-qed
-
-text {*
-  This fact may be split up into two inequalities (merely using
-  transitivity of @{text "\<subseteq>" }, which is an instance of the overloaded
-  @{text "\<le>"} in Isabelle/HOL).
-*}
-
-lemma AG_fp_1: "\<AG> p \<subseteq> p"
-proof -
-  note AG_fp also have "p \<inter> \<AX> \<AG> p \<subseteq> p" by auto
-  finally show ?thesis .
-qed
-
-text {**}
-
-lemma AG_fp_2: "\<AG> p \<subseteq> \<AX> \<AG> p"
-proof -
-  note AG_fp also have "p \<inter> \<AX> \<AG> p \<subseteq> \<AX> \<AG> p" by auto
-  finally show ?thesis .
-qed
-
-text {*
-  On the other hand, we have from the Knaster-Tarski fixed point
-  theorem that any other post-fixed point of @{term "\<lambda>s. p \<inter> AX s"} is
-  smaller than @{term "AG p"}.  A post-fixed point is a set of states
-  @{term q} such that @{term "q \<subseteq> p \<inter> AX q"}.  This leads to the
-  following co-induction principle for @{term "AG p"}.
-*}
-
-lemma AG_I: "q \<subseteq> p \<inter> \<AX> q \<Longrightarrow> q \<subseteq> \<AG> p"
-  by (simp only: AG_gfp) (rule gfp_upperbound)
-
-
-section {* The tree induction principle \label{sec:calc-ctl-tree-induct} *}
-
-text {*
-  With the most basic facts available, we are now able to establish a
-  few more interesting results, leading to the \emph{tree induction}
-  principle for @{text AG} (see below).  We will use some elementary
-  monotonicity and distributivity rules.
-*}
-
-lemma AX_int: "\<AX> (p \<inter> q) = \<AX> p \<inter> \<AX> q" by auto 
-lemma AX_mono: "p \<subseteq> q \<Longrightarrow> \<AX> p \<subseteq> \<AX> q" by auto
-lemma AG_mono: "p \<subseteq> q \<Longrightarrow> \<AG> p \<subseteq> \<AG> q"
-  by (simp only: AG_gfp, rule gfp_mono) auto 
-
-text {*
-  The formula @{term "AG p"} implies @{term "AX p"} (we use
-  substitution of @{text "\<subseteq>"} with monotonicity).
-*}
-
-lemma AG_AX: "\<AG> p \<subseteq> \<AX> p"
-proof -
-  have "\<AG> p \<subseteq> \<AX> \<AG> p" by (rule AG_fp_2)
-  also have "\<AG> p \<subseteq> p" by (rule AG_fp_1) moreover note AX_mono
-  finally show ?thesis .
-qed
-
-text {*
-  Furthermore we show idempotency of the @{text "\<AG>"} operator.
-  The proof is a good example of how accumulated facts may get
-  used to feed a single rule step.
-*}
-
-lemma AG_AG: "\<AG> \<AG> p = \<AG> p"
-proof
-  show "\<AG> \<AG> p \<subseteq> \<AG> p" by (rule AG_fp_1)
-next
-  show "\<AG> p \<subseteq> \<AG> \<AG> p"
-  proof (rule AG_I)
-    have "\<AG> p \<subseteq> \<AG> p" ..
-    moreover have "\<AG> p \<subseteq> \<AX> \<AG> p" by (rule AG_fp_2)
-    ultimately show "\<AG> p \<subseteq> \<AG> p \<inter> \<AX> \<AG> p" ..
-  qed
-qed
-
-text {*
-  \smallskip We now give an alternative characterization of the @{text
-  "\<AG>"} operator, which describes the @{text "\<AG>"} operator in
-  an ``operational'' way by tree induction: In a state holds @{term
-  "AG p"} iff in that state holds @{term p}, and in all reachable
-  states @{term s} follows from the fact that @{term p} holds in
-  @{term s}, that @{term p} also holds in all successor states of
-  @{term s}.  We use the co-induction principle @{thm [source] AG_I}
-  to establish this in a purely algebraic manner.
-*}
-
-theorem AG_induct: "p \<inter> \<AG> (p \<rightarrow> \<AX> p) = \<AG> p"
-proof
-  show "p \<inter> \<AG> (p \<rightarrow> \<AX> p) \<subseteq> \<AG> p"  (is "?lhs \<subseteq> _")
-  proof (rule AG_I)
-    show "?lhs \<subseteq> p \<inter> \<AX> ?lhs"
-    proof
-      show "?lhs \<subseteq> p" ..
-      show "?lhs \<subseteq> \<AX> ?lhs"
-      proof -
-	{
-	  have "\<AG> (p \<rightarrow> \<AX> p) \<subseteq> p \<rightarrow> \<AX> p" by (rule AG_fp_1)
-          also have "p \<inter> p \<rightarrow> \<AX> p \<subseteq> \<AX> p" ..
-          finally have "?lhs \<subseteq> \<AX> p" by auto
-	}  
-	moreover
-	{
-	  have "p \<inter> \<AG> (p \<rightarrow> \<AX> p) \<subseteq> \<AG> (p \<rightarrow> \<AX> p)" ..
-          also have "\<dots> \<subseteq> \<AX> \<dots>" by (rule AG_fp_2)
-          finally have "?lhs \<subseteq> \<AX> \<AG> (p \<rightarrow> \<AX> p)" .
-	}  
-	ultimately have "?lhs \<subseteq> \<AX> p \<inter> \<AX> \<AG> (p \<rightarrow> \<AX> p)" ..
-	also have "\<dots> = \<AX> ?lhs" by (simp only: AX_int)
-	finally show ?thesis .
-      qed
-    qed
-  qed
-next
-  show "\<AG> p \<subseteq> p \<inter> \<AG> (p \<rightarrow> \<AX> p)"
-  proof
-    show "\<AG> p \<subseteq> p" by (rule AG_fp_1)
-    show "\<AG> p \<subseteq> \<AG> (p \<rightarrow> \<AX> p)"
-    proof -
-      have "\<AG> p = \<AG> \<AG> p" by (simp only: AG_AG)
-      also have "\<AG> p \<subseteq> \<AX> p" by (rule AG_AX) moreover note AG_mono
-      also have "\<AX> p \<subseteq> (p \<rightarrow> \<AX> p)" .. moreover note AG_mono
-      finally show ?thesis .
-    qed
-  qed
-qed
-
-
-section {* An application of tree induction \label{sec:calc-ctl-commute} *}
-
-text {*
-  Further interesting properties of CTL expressions may be
-  demonstrated with the help of tree induction; here we show that
-  @{text \<AX>} and @{text \<AG>} commute.
-*}
-
-theorem AG_AX_commute: "\<AG> \<AX> p = \<AX> \<AG> p"
-proof -
-  have "\<AG> \<AX> p = \<AX> p \<inter> \<AX> \<AG> \<AX> p" by (rule AG_fp)
-  also have "\<dots> = \<AX> (p \<inter> \<AG> \<AX> p)" by (simp only: AX_int)
-  also have "p \<inter> \<AG> \<AX> p = \<AG> p"  (is "?lhs = _")
-  proof  
-    have "\<AX> p \<subseteq> p \<rightarrow> \<AX> p" ..
-    also have "p \<inter> \<AG> (p \<rightarrow> \<AX> p) = \<AG> p" by (rule AG_induct)
-    also note Int_mono AG_mono
-    ultimately show "?lhs \<subseteq> \<AG> p" by fast
-  next  
-    have "\<AG> p \<subseteq> p" by (rule AG_fp_1)
-    moreover 
-    {
-      have "\<AG> p = \<AG> \<AG> p" by (simp only: AG_AG)
-      also have "\<AG> p \<subseteq> \<AX> p" by (rule AG_AX)
-      also note AG_mono
-      ultimately have "\<AG> p \<subseteq> \<AG> \<AX> p" .
-    } 
-    ultimately show "\<AG> p \<subseteq> ?lhs" ..
-  qed  
-  finally show ?thesis .
-qed
-
-end