src/Pure/Examples/Higher_Order_Logic.thy
changeset 71924 e5df9c8d9d4b
parent 71831 26c4af1e4ffe
child 76987 4c275405faae
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Pure/Examples/Higher_Order_Logic.thy	Mon Jun 08 15:09:57 2020 +0200
@@ -0,0 +1,520 @@
+(*  Title:      Pure/Examples/Higher_Order_Logic.thy
+    Author:     Makarius
+*)
+
+section \<open>Foundations of HOL\<close>
+
+theory Higher_Order_Logic
+  imports Pure
+begin
+
+text \<open>
+  The following theory development illustrates the foundations of Higher-Order
+  Logic. The ``HOL'' logic that is given here resembles @{cite
+  "Gordon:1985:HOL"} and its predecessor @{cite "church40"}, but the order of
+  axiomatizations and defined connectives has be adapted to modern
+  presentations of \<open>\<lambda>\<close>-calculus and Constructive Type Theory. Thus it fits
+  nicely to the underlying Natural Deduction framework of Isabelle/Pure and
+  Isabelle/Isar.
+\<close>
+
+
+section \<open>HOL syntax within Pure\<close>
+
+class type
+default_sort type
+
+typedecl o
+instance o :: type ..
+instance "fun" :: (type, type) type ..
+
+judgment Trueprop :: "o \<Rightarrow> prop"  ("_" 5)
+
+
+section \<open>Minimal logic (axiomatization)\<close>
+
+axiomatization imp :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<longrightarrow>" 25)
+  where impI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> A \<longrightarrow> B"
+    and impE [dest, trans]: "A \<longrightarrow> B \<Longrightarrow> A \<Longrightarrow> B"
+
+axiomatization All :: "('a \<Rightarrow> o) \<Rightarrow> o"  (binder "\<forall>" 10)
+  where allI [intro]: "(\<And>x. P x) \<Longrightarrow> \<forall>x. P x"
+    and allE [dest]: "\<forall>x. P x \<Longrightarrow> P a"
+
+lemma atomize_imp [atomize]: "(A \<Longrightarrow> B) \<equiv> Trueprop (A \<longrightarrow> B)"
+  by standard (fact impI, fact impE)
+
+lemma atomize_all [atomize]: "(\<And>x. P x) \<equiv> Trueprop (\<forall>x. P x)"
+  by standard (fact allI, fact allE)
+
+
+subsubsection \<open>Derived connectives\<close>
+
+definition False :: o
+  where "False \<equiv> \<forall>A. A"
+
+lemma FalseE [elim]:
+  assumes "False"
+  shows A
+proof -
+  from \<open>False\<close> have "\<forall>A. A" by (simp only: False_def)
+  then show A ..
+qed
+
+
+definition True :: o
+  where "True \<equiv> False \<longrightarrow> False"
+
+lemma TrueI [intro]: True
+  unfolding True_def ..
+
+
+definition not :: "o \<Rightarrow> o"  ("\<not> _" [40] 40)
+  where "not \<equiv> \<lambda>A. A \<longrightarrow> False"
+
+lemma notI [intro]:
+  assumes "A \<Longrightarrow> False"
+  shows "\<not> A"
+  using assms unfolding not_def ..
+
+lemma notE [elim]:
+  assumes "\<not> A" and A
+  shows B
+proof -
+  from \<open>\<not> A\<close> have "A \<longrightarrow> False" by (simp only: not_def)
+  from this and \<open>A\<close> have "False" ..
+  then show B ..
+qed
+
+lemma notE': "A \<Longrightarrow> \<not> A \<Longrightarrow> B"
+  by (rule notE)
+
+lemmas contradiction = notE notE'  \<comment> \<open>proof by contradiction in any order\<close>
+
+
+definition conj :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<and>" 35)
+  where "A \<and> B \<equiv> \<forall>C. (A \<longrightarrow> B \<longrightarrow> C) \<longrightarrow> C"
+
+lemma conjI [intro]:
+  assumes A and B
+  shows "A \<and> B"
+  unfolding conj_def
+proof
+  fix C
+  show "(A \<longrightarrow> B \<longrightarrow> C) \<longrightarrow> C"
+  proof
+    assume "A \<longrightarrow> B \<longrightarrow> C"
+    also note \<open>A\<close>
+    also note \<open>B\<close>
+    finally show C .
+  qed
+qed
+
+lemma conjE [elim]:
+  assumes "A \<and> B"
+  obtains A and B
+proof
+  from \<open>A \<and> B\<close> have *: "(A \<longrightarrow> B \<longrightarrow> C) \<longrightarrow> C" for C
+    unfolding conj_def ..
+  show A
+  proof -
+    note * [of A]
+    also have "A \<longrightarrow> B \<longrightarrow> A"
+    proof
+      assume A
+      then show "B \<longrightarrow> A" ..
+    qed
+    finally show ?thesis .
+  qed
+  show B
+  proof -
+    note * [of B]
+    also have "A \<longrightarrow> B \<longrightarrow> B"
+    proof
+      show "B \<longrightarrow> B" ..
+    qed
+    finally show ?thesis .
+  qed
+qed
+
+
+definition disj :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<or>" 30)
+  where "A \<or> B \<equiv> \<forall>C. (A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
+
+lemma disjI1 [intro]:
+  assumes A
+  shows "A \<or> B"
+  unfolding disj_def
+proof
+  fix C
+  show "(A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
+  proof
+    assume "A \<longrightarrow> C"
+    from this and \<open>A\<close> have C ..
+    then show "(B \<longrightarrow> C) \<longrightarrow> C" ..
+  qed
+qed
+
+lemma disjI2 [intro]:
+  assumes B
+  shows "A \<or> B"
+  unfolding disj_def
+proof
+  fix C
+  show "(A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
+  proof
+    show "(B \<longrightarrow> C) \<longrightarrow> C"
+    proof
+      assume "B \<longrightarrow> C"
+      from this and \<open>B\<close> show C ..
+    qed
+  qed
+qed
+
+lemma disjE [elim]:
+  assumes "A \<or> B"
+  obtains (a) A | (b) B
+proof -
+  from \<open>A \<or> B\<close> have "(A \<longrightarrow> thesis) \<longrightarrow> (B \<longrightarrow> thesis) \<longrightarrow> thesis"
+    unfolding disj_def ..
+  also have "A \<longrightarrow> thesis"
+  proof
+    assume A
+    then show thesis by (rule a)
+  qed
+  also have "B \<longrightarrow> thesis"
+  proof
+    assume B
+    then show thesis by (rule b)
+  qed
+  finally show thesis .
+qed
+
+
+definition Ex :: "('a \<Rightarrow> o) \<Rightarrow> o"  (binder "\<exists>" 10)
+  where "\<exists>x. P x \<equiv> \<forall>C. (\<forall>x. P x \<longrightarrow> C) \<longrightarrow> C"
+
+lemma exI [intro]: "P a \<Longrightarrow> \<exists>x. P x"
+  unfolding Ex_def
+proof
+  fix C
+  assume "P a"
+  show "(\<forall>x. P x \<longrightarrow> C) \<longrightarrow> C"
+  proof
+    assume "\<forall>x. P x \<longrightarrow> C"
+    then have "P a \<longrightarrow> C" ..
+    from this and \<open>P a\<close> show C ..
+  qed
+qed
+
+lemma exE [elim]:
+  assumes "\<exists>x. P x"
+  obtains (that) x where "P x"
+proof -
+  from \<open>\<exists>x. P x\<close> have "(\<forall>x. P x \<longrightarrow> thesis) \<longrightarrow> thesis"
+    unfolding Ex_def ..
+  also have "\<forall>x. P x \<longrightarrow> thesis"
+  proof
+    fix x
+    show "P x \<longrightarrow> thesis"
+    proof
+      assume "P x"
+      then show thesis by (rule that)
+    qed
+  qed
+  finally show thesis .
+qed
+
+
+subsubsection \<open>Extensional equality\<close>
+
+axiomatization equal :: "'a \<Rightarrow> 'a \<Rightarrow> o"  (infixl "=" 50)
+  where refl [intro]: "x = x"
+    and subst: "x = y \<Longrightarrow> P x \<Longrightarrow> P y"
+
+abbreviation not_equal :: "'a \<Rightarrow> 'a \<Rightarrow> o"  (infixl "\<noteq>" 50)
+  where "x \<noteq> y \<equiv> \<not> (x = y)"
+
+abbreviation iff :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<longleftrightarrow>" 25)
+  where "A \<longleftrightarrow> B \<equiv> A = B"
+
+axiomatization
+  where ext [intro]: "(\<And>x. f x = g x) \<Longrightarrow> f = g"
+    and iff [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> (B \<Longrightarrow> A) \<Longrightarrow> A \<longleftrightarrow> B"
+  for f g :: "'a \<Rightarrow> 'b"
+
+lemma sym [sym]: "y = x" if "x = y"
+  using that by (rule subst) (rule refl)
+
+lemma [trans]: "x = y \<Longrightarrow> P y \<Longrightarrow> P x"
+  by (rule subst) (rule sym)
+
+lemma [trans]: "P x \<Longrightarrow> x = y \<Longrightarrow> P y"
+  by (rule subst)
+
+lemma arg_cong: "f x = f y" if "x = y"
+  using that by (rule subst) (rule refl)
+
+lemma fun_cong: "f x = g x" if "f = g"
+  using that by (rule subst) (rule refl)
+
+lemma trans [trans]: "x = y \<Longrightarrow> y = z \<Longrightarrow> x = z"
+  by (rule subst)
+
+lemma iff1 [elim]: "A \<longleftrightarrow> B \<Longrightarrow> A \<Longrightarrow> B"
+  by (rule subst)
+
+lemma iff2 [elim]: "A \<longleftrightarrow> B \<Longrightarrow> B \<Longrightarrow> A"
+  by (rule subst) (rule sym)
+
+
+subsection \<open>Cantor's Theorem\<close>
+
+text \<open>
+  Cantor's Theorem states that there is no surjection from a set to its
+  powerset. The subsequent formulation uses elementary \<open>\<lambda>\<close>-calculus and
+  predicate logic, with standard introduction and elimination rules.
+\<close>
+
+lemma iff_contradiction:
+  assumes *: "\<not> A \<longleftrightarrow> A"
+  shows C
+proof (rule notE)
+  show "\<not> A"
+  proof
+    assume A
+    with * have "\<not> A" ..
+    from this and \<open>A\<close> show False ..
+  qed
+  with * show A ..
+qed
+
+theorem Cantor: "\<not> (\<exists>f :: 'a \<Rightarrow> 'a \<Rightarrow> o. \<forall>A. \<exists>x. A = f x)"
+proof
+  assume "\<exists>f :: 'a \<Rightarrow> 'a \<Rightarrow> o. \<forall>A. \<exists>x. A = f x"
+  then obtain f :: "'a \<Rightarrow> 'a \<Rightarrow> o" where *: "\<forall>A. \<exists>x. A = f x" ..
+  let ?D = "\<lambda>x. \<not> f x x"
+  from * have "\<exists>x. ?D = f x" ..
+  then obtain a where "?D = f a" ..
+  then have "?D a \<longleftrightarrow> f a a" using refl by (rule subst)
+  then have "\<not> f a a \<longleftrightarrow> f a a" .
+  then show False by (rule iff_contradiction)
+qed
+
+
+subsection \<open>Characterization of Classical Logic\<close>
+
+text \<open>
+  The subsequent rules of classical reasoning are all equivalent.
+\<close>
+
+locale classical =
+  assumes classical: "(\<not> A \<Longrightarrow> A) \<Longrightarrow> A"
+  \<comment> \<open>predicate definition and hypothetical context\<close>
+begin
+
+lemma classical_contradiction:
+  assumes "\<not> A \<Longrightarrow> False"
+  shows A
+proof (rule classical)
+  assume "\<not> A"
+  then have False by (rule assms)
+  then show A ..
+qed
+
+lemma double_negation:
+  assumes "\<not> \<not> A"
+  shows A
+proof (rule classical_contradiction)
+  assume "\<not> A"
+  with \<open>\<not> \<not> A\<close> show False by (rule contradiction)
+qed
+
+lemma tertium_non_datur: "A \<or> \<not> A"
+proof (rule double_negation)
+  show "\<not> \<not> (A \<or> \<not> A)"
+  proof
+    assume "\<not> (A \<or> \<not> A)"
+    have "\<not> A"
+    proof
+      assume A then have "A \<or> \<not> A" ..
+      with \<open>\<not> (A \<or> \<not> A)\<close> show False by (rule contradiction)
+    qed
+    then have "A \<or> \<not> A" ..
+    with \<open>\<not> (A \<or> \<not> A)\<close> show False by (rule contradiction)
+  qed
+qed
+
+lemma classical_cases:
+  obtains A | "\<not> A"
+  using tertium_non_datur
+proof
+  assume A
+  then show thesis ..
+next
+  assume "\<not> A"
+  then show thesis ..
+qed
+
+end
+
+lemma classical_if_cases: classical
+  if cases: "\<And>A C. (A \<Longrightarrow> C) \<Longrightarrow> (\<not> A \<Longrightarrow> C) \<Longrightarrow> C"
+proof
+  fix A
+  assume *: "\<not> A \<Longrightarrow> A"
+  show A
+  proof (rule cases)
+    assume A
+    then show A .
+  next
+    assume "\<not> A"
+    then show A by (rule *)
+  qed
+qed
+
+
+section \<open>Peirce's Law\<close>
+
+text \<open>
+  Peirce's Law is another characterization of classical reasoning. Its
+  statement only requires implication.
+\<close>
+
+theorem (in classical) Peirce's_Law: "((A \<longrightarrow> B) \<longrightarrow> A) \<longrightarrow> A"
+proof
+  assume *: "(A \<longrightarrow> B) \<longrightarrow> A"
+  show A
+  proof (rule classical)
+    assume "\<not> A"
+    have "A \<longrightarrow> B"
+    proof
+      assume A
+      with \<open>\<not> A\<close> show B by (rule contradiction)
+    qed
+    with * show A ..
+  qed
+qed
+
+
+section \<open>Hilbert's choice operator (axiomatization)\<close>
+
+axiomatization Eps :: "('a \<Rightarrow> o) \<Rightarrow> 'a"
+  where someI: "P x \<Longrightarrow> P (Eps P)"
+
+syntax "_Eps" :: "pttrn \<Rightarrow> o \<Rightarrow> 'a"  ("(3SOME _./ _)" [0, 10] 10)
+translations "SOME x. P" \<rightleftharpoons> "CONST Eps (\<lambda>x. P)"
+
+text \<open>
+  \<^medskip>
+  It follows a derivation of the classical law of tertium-non-datur by
+  means of Hilbert's choice operator (due to Berghofer, Beeson, Harrison,
+  based on a proof by Diaconescu).
+  \<^medskip>
+\<close>
+
+theorem Diaconescu: "A \<or> \<not> A"
+proof -
+  let ?P = "\<lambda>x. (A \<and> x) \<or> \<not> x"
+  let ?Q = "\<lambda>x. (A \<and> \<not> x) \<or> x"
+
+  have a: "?P (Eps ?P)"
+  proof (rule someI)
+    have "\<not> False" ..
+    then show "?P False" ..
+  qed
+  have b: "?Q (Eps ?Q)"
+  proof (rule someI)
+    have True ..
+    then show "?Q True" ..
+  qed
+
+  from a show ?thesis
+  proof
+    assume "A \<and> Eps ?P"
+    then have A ..
+    then show ?thesis ..
+  next
+    assume "\<not> Eps ?P"
+    from b show ?thesis
+    proof
+      assume "A \<and> \<not> Eps ?Q"
+      then have A ..
+      then show ?thesis ..
+    next
+      assume "Eps ?Q"
+      have neq: "?P \<noteq> ?Q"
+      proof
+        assume "?P = ?Q"
+        then have "Eps ?P \<longleftrightarrow> Eps ?Q" by (rule arg_cong)
+        also note \<open>Eps ?Q\<close>
+        finally have "Eps ?P" .
+        with \<open>\<not> Eps ?P\<close> show False by (rule contradiction)
+      qed
+      have "\<not> A"
+      proof
+        assume A
+        have "?P = ?Q"
+        proof (rule ext)
+          show "?P x \<longleftrightarrow> ?Q x" for x
+          proof
+            assume "?P x"
+            then show "?Q x"
+            proof
+              assume "\<not> x"
+              with \<open>A\<close> have "A \<and> \<not> x" ..
+              then show ?thesis ..
+            next
+              assume "A \<and> x"
+              then have x ..
+              then show ?thesis ..
+            qed
+          next
+            assume "?Q x"
+            then show "?P x"
+            proof
+              assume "A \<and> \<not> x"
+              then have "\<not> x" ..
+              then show ?thesis ..
+            next
+              assume x
+              with \<open>A\<close> have "A \<and> x" ..
+              then show ?thesis ..
+            qed
+          qed
+        qed
+        with neq show False by (rule contradiction)
+      qed
+      then show ?thesis ..
+    qed
+  qed
+qed
+
+text \<open>
+  This means, the hypothetical predicate \<^const>\<open>classical\<close> always holds
+  unconditionally (with all consequences).
+\<close>
+
+interpretation classical
+proof (rule classical_if_cases)
+  fix A C
+  assume *: "A \<Longrightarrow> C"
+    and **: "\<not> A \<Longrightarrow> C"
+  from Diaconescu [of A] show C
+  proof
+    assume A
+    then show C by (rule *)
+  next
+    assume "\<not> A"
+    then show C by (rule **)
+  qed
+qed
+
+thm classical
+  classical_contradiction
+  double_negation
+  tertium_non_datur
+  classical_cases
+  Peirce's_Law
+
+end