src/HOLCF/ex/Pattern_Match.thy
changeset 37109 e67760c1b851
child 39557 fe5722fce758
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/ex/Pattern_Match.thy	Mon May 24 11:29:49 2010 -0700
@@ -0,0 +1,591 @@
+(*  Title:      HOLCF/ex/Pattern_Match.thy
+    Author:     Brian Huffman
+*)
+
+header {* An experimental pattern-matching notation *}
+
+theory Pattern_Match
+imports HOLCF
+begin
+
+text {* FIXME: Find a proper way to un-hide constants. *}
+
+abbreviation fail :: "'a match"
+where "fail \<equiv> Fixrec.fail"
+
+abbreviation succeed :: "'a \<rightarrow> 'a match"
+where "succeed \<equiv> Fixrec.succeed"
+
+abbreviation run :: "'a match \<rightarrow> 'a"
+where "run \<equiv> Fixrec.run"
+
+subsection {* Fatbar combinator *}
+
+definition
+  fatbar :: "('a \<rightarrow> 'b match) \<rightarrow> ('a \<rightarrow> 'b match) \<rightarrow> ('a \<rightarrow> 'b match)" where
+  "fatbar = (\<Lambda> a b x. a\<cdot>x +++ b\<cdot>x)"
+
+abbreviation
+  fatbar_syn :: "['a \<rightarrow> 'b match, 'a \<rightarrow> 'b match] \<Rightarrow> 'a \<rightarrow> 'b match" (infixr "\<parallel>" 60)  where
+  "m1 \<parallel> m2 == fatbar\<cdot>m1\<cdot>m2"
+
+lemma fatbar1: "m\<cdot>x = \<bottom> \<Longrightarrow> (m \<parallel> ms)\<cdot>x = \<bottom>"
+by (simp add: fatbar_def)
+
+lemma fatbar2: "m\<cdot>x = fail \<Longrightarrow> (m \<parallel> ms)\<cdot>x = ms\<cdot>x"
+by (simp add: fatbar_def)
+
+lemma fatbar3: "m\<cdot>x = succeed\<cdot>y \<Longrightarrow> (m \<parallel> ms)\<cdot>x = succeed\<cdot>y"
+by (simp add: fatbar_def)
+
+lemmas fatbar_simps = fatbar1 fatbar2 fatbar3
+
+lemma run_fatbar1: "m\<cdot>x = \<bottom> \<Longrightarrow> run\<cdot>((m \<parallel> ms)\<cdot>x) = \<bottom>"
+by (simp add: fatbar_def)
+
+lemma run_fatbar2: "m\<cdot>x = fail \<Longrightarrow> run\<cdot>((m \<parallel> ms)\<cdot>x) = run\<cdot>(ms\<cdot>x)"
+by (simp add: fatbar_def)
+
+lemma run_fatbar3: "m\<cdot>x = succeed\<cdot>y \<Longrightarrow> run\<cdot>((m \<parallel> ms)\<cdot>x) = y"
+by (simp add: fatbar_def)
+
+lemmas run_fatbar_simps [simp] = run_fatbar1 run_fatbar2 run_fatbar3
+
+subsection {* Case branch combinator *}
+
+definition
+  branch :: "('a \<rightarrow> 'b match) \<Rightarrow> ('b \<rightarrow> 'c) \<rightarrow> ('a \<rightarrow> 'c match)" where
+  "branch p \<equiv> \<Lambda> r x. match_case\<cdot>fail\<cdot>(\<Lambda> y. succeed\<cdot>(r\<cdot>y))\<cdot>(p\<cdot>x)"
+
+lemma branch_simps:
+  "p\<cdot>x = \<bottom> \<Longrightarrow> branch p\<cdot>r\<cdot>x = \<bottom>"
+  "p\<cdot>x = fail \<Longrightarrow> branch p\<cdot>r\<cdot>x = fail"
+  "p\<cdot>x = succeed\<cdot>y \<Longrightarrow> branch p\<cdot>r\<cdot>x = succeed\<cdot>(r\<cdot>y)"
+by (simp_all add: branch_def)
+
+lemma branch_succeed [simp]: "branch succeed\<cdot>r\<cdot>x = succeed\<cdot>(r\<cdot>x)"
+by (simp add: branch_def)
+
+subsection {* Cases operator *}
+
+definition
+  cases :: "'a match \<rightarrow> 'a::pcpo" where
+  "cases = match_case\<cdot>\<bottom>\<cdot>ID"
+
+text {* rewrite rules for cases *}
+
+lemma cases_strict [simp]: "cases\<cdot>\<bottom> = \<bottom>"
+by (simp add: cases_def)
+
+lemma cases_fail [simp]: "cases\<cdot>fail = \<bottom>"
+by (simp add: cases_def)
+
+lemma cases_succeed [simp]: "cases\<cdot>(succeed\<cdot>x) = x"
+by (simp add: cases_def)
+
+subsection {* Case syntax *}
+
+nonterminals
+  Case_syn  Cases_syn
+
+syntax
+  "_Case_syntax":: "['a, Cases_syn] => 'b"               ("(Case _ of/ _)" 10)
+  "_Case1"      :: "['a, 'b] => Case_syn"                ("(2_ =>/ _)" 10)
+  ""            :: "Case_syn => Cases_syn"               ("_")
+  "_Case2"      :: "[Case_syn, Cases_syn] => Cases_syn"  ("_/ | _")
+
+syntax (xsymbols)
+  "_Case1"      :: "['a, 'b] => Case_syn"                ("(2_ \<Rightarrow>/ _)" 10)
+
+translations
+  "_Case_syntax x ms" == "CONST cases\<cdot>(ms\<cdot>x)"
+  "_Case2 m ms" == "m \<parallel> ms"
+
+text {* Parsing Case expressions *}
+
+syntax
+  "_pat" :: "'a"
+  "_variable" :: "'a"
+  "_noargs" :: "'a"
+
+translations
+  "_Case1 p r" => "CONST branch (_pat p)\<cdot>(_variable p r)"
+  "_variable (_args x y) r" => "CONST csplit\<cdot>(_variable x (_variable y r))"
+  "_variable _noargs r" => "CONST unit_when\<cdot>r"
+
+parse_translation {*
+(* rewrite (_pat x) => (succeed) *)
+(* rewrite (_variable x t) => (Abs_CFun (%x. t)) *)
+ [(@{syntax_const "_pat"}, fn _ => Syntax.const @{const_syntax Fixrec.succeed}),
+  mk_binder_tr (@{syntax_const "_variable"}, @{const_syntax Abs_CFun})];
+*}
+
+text {* Printing Case expressions *}
+
+syntax
+  "_match" :: "'a"
+
+print_translation {*
+  let
+    fun dest_LAM (Const (@{const_syntax Rep_CFun},_) $ Const (@{const_syntax unit_when},_) $ t) =
+          (Syntax.const @{syntax_const "_noargs"}, t)
+    |   dest_LAM (Const (@{const_syntax Rep_CFun},_) $ Const (@{const_syntax csplit},_) $ t) =
+          let
+            val (v1, t1) = dest_LAM t;
+            val (v2, t2) = dest_LAM t1;
+          in (Syntax.const @{syntax_const "_args"} $ v1 $ v2, t2) end
+    |   dest_LAM (Const (@{const_syntax Abs_CFun},_) $ t) =
+          let
+            val abs =
+              case t of Abs abs => abs
+                | _ => ("x", dummyT, incr_boundvars 1 t $ Bound 0);
+            val (x, t') = atomic_abs_tr' abs;
+          in (Syntax.const @{syntax_const "_variable"} $ x, t') end
+    |   dest_LAM _ = raise Match; (* too few vars: abort translation *)
+
+    fun Case1_tr' [Const(@{const_syntax branch},_) $ p, r] =
+          let val (v, t) = dest_LAM r in
+            Syntax.const @{syntax_const "_Case1"} $
+              (Syntax.const @{syntax_const "_match"} $ p $ v) $ t
+          end;
+
+  in [(@{const_syntax Rep_CFun}, Case1_tr')] end;
+*}
+
+translations
+  "x" <= "_match (CONST succeed) (_variable x)"
+
+
+subsection {* Pattern combinators for data constructors *}
+
+types ('a, 'b) pat = "'a \<rightarrow> 'b match"
+
+definition
+  cpair_pat :: "('a, 'c) pat \<Rightarrow> ('b, 'd) pat \<Rightarrow> ('a \<times> 'b, 'c \<times> 'd) pat" where
+  "cpair_pat p1 p2 = (\<Lambda>(x, y).
+    match_case\<cdot>fail\<cdot>(\<Lambda> a. match_case\<cdot>fail\<cdot>(\<Lambda> b. succeed\<cdot>(a, b))\<cdot>(p2\<cdot>y))\<cdot>(p1\<cdot>x))"
+
+definition
+  spair_pat ::
+  "('a, 'c) pat \<Rightarrow> ('b, 'd) pat \<Rightarrow> ('a::pcpo \<otimes> 'b::pcpo, 'c \<times> 'd) pat" where
+  "spair_pat p1 p2 = (\<Lambda>(:x, y:). cpair_pat p1 p2\<cdot>(x, y))"
+
+definition
+  sinl_pat :: "('a, 'c) pat \<Rightarrow> ('a::pcpo \<oplus> 'b::pcpo, 'c) pat" where
+  "sinl_pat p = sscase\<cdot>p\<cdot>(\<Lambda> x. fail)"
+
+definition
+  sinr_pat :: "('b, 'c) pat \<Rightarrow> ('a::pcpo \<oplus> 'b::pcpo, 'c) pat" where
+  "sinr_pat p = sscase\<cdot>(\<Lambda> x. fail)\<cdot>p"
+
+definition
+  up_pat :: "('a, 'b) pat \<Rightarrow> ('a u, 'b) pat" where
+  "up_pat p = fup\<cdot>p"
+
+definition
+  TT_pat :: "(tr, unit) pat" where
+  "TT_pat = (\<Lambda> b. If b then succeed\<cdot>() else fail fi)"
+
+definition
+  FF_pat :: "(tr, unit) pat" where
+  "FF_pat = (\<Lambda> b. If b then fail else succeed\<cdot>() fi)"
+
+definition
+  ONE_pat :: "(one, unit) pat" where
+  "ONE_pat = (\<Lambda> ONE. succeed\<cdot>())"
+
+text {* Parse translations (patterns) *}
+translations
+  "_pat (XCONST Pair x y)" => "CONST cpair_pat (_pat x) (_pat y)"
+  "_pat (XCONST spair\<cdot>x\<cdot>y)" => "CONST spair_pat (_pat x) (_pat y)"
+  "_pat (XCONST sinl\<cdot>x)" => "CONST sinl_pat (_pat x)"
+  "_pat (XCONST sinr\<cdot>x)" => "CONST sinr_pat (_pat x)"
+  "_pat (XCONST up\<cdot>x)" => "CONST up_pat (_pat x)"
+  "_pat (XCONST TT)" => "CONST TT_pat"
+  "_pat (XCONST FF)" => "CONST FF_pat"
+  "_pat (XCONST ONE)" => "CONST ONE_pat"
+
+text {* CONST version is also needed for constructors with special syntax *}
+translations
+  "_pat (CONST Pair x y)" => "CONST cpair_pat (_pat x) (_pat y)"
+  "_pat (CONST spair\<cdot>x\<cdot>y)" => "CONST spair_pat (_pat x) (_pat y)"
+
+text {* Parse translations (variables) *}
+translations
+  "_variable (XCONST Pair x y) r" => "_variable (_args x y) r"
+  "_variable (XCONST spair\<cdot>x\<cdot>y) r" => "_variable (_args x y) r"
+  "_variable (XCONST sinl\<cdot>x) r" => "_variable x r"
+  "_variable (XCONST sinr\<cdot>x) r" => "_variable x r"
+  "_variable (XCONST up\<cdot>x) r" => "_variable x r"
+  "_variable (XCONST TT) r" => "_variable _noargs r"
+  "_variable (XCONST FF) r" => "_variable _noargs r"
+  "_variable (XCONST ONE) r" => "_variable _noargs r"
+
+translations
+  "_variable (CONST Pair x y) r" => "_variable (_args x y) r"
+  "_variable (CONST spair\<cdot>x\<cdot>y) r" => "_variable (_args x y) r"
+
+text {* Print translations *}
+translations
+  "CONST Pair (_match p1 v1) (_match p2 v2)"
+      <= "_match (CONST cpair_pat p1 p2) (_args v1 v2)"
+  "CONST spair\<cdot>(_match p1 v1)\<cdot>(_match p2 v2)"
+      <= "_match (CONST spair_pat p1 p2) (_args v1 v2)"
+  "CONST sinl\<cdot>(_match p1 v1)" <= "_match (CONST sinl_pat p1) v1"
+  "CONST sinr\<cdot>(_match p1 v1)" <= "_match (CONST sinr_pat p1) v1"
+  "CONST up\<cdot>(_match p1 v1)" <= "_match (CONST up_pat p1) v1"
+  "CONST TT" <= "_match (CONST TT_pat) _noargs"
+  "CONST FF" <= "_match (CONST FF_pat) _noargs"
+  "CONST ONE" <= "_match (CONST ONE_pat) _noargs"
+
+lemma cpair_pat1:
+  "branch p\<cdot>r\<cdot>x = \<bottom> \<Longrightarrow> branch (cpair_pat p q)\<cdot>(csplit\<cdot>r)\<cdot>(x, y) = \<bottom>"
+apply (simp add: branch_def cpair_pat_def)
+apply (cases "p\<cdot>x", simp_all)
+done
+
+lemma cpair_pat2:
+  "branch p\<cdot>r\<cdot>x = fail \<Longrightarrow> branch (cpair_pat p q)\<cdot>(csplit\<cdot>r)\<cdot>(x, y) = fail"
+apply (simp add: branch_def cpair_pat_def)
+apply (cases "p\<cdot>x", simp_all)
+done
+
+lemma cpair_pat3:
+  "branch p\<cdot>r\<cdot>x = succeed\<cdot>s \<Longrightarrow>
+   branch (cpair_pat p q)\<cdot>(csplit\<cdot>r)\<cdot>(x, y) = branch q\<cdot>s\<cdot>y"
+apply (simp add: branch_def cpair_pat_def)
+apply (cases "p\<cdot>x", simp_all)
+apply (cases "q\<cdot>y", simp_all)
+done
+
+lemmas cpair_pat [simp] =
+  cpair_pat1 cpair_pat2 cpair_pat3
+
+lemma spair_pat [simp]:
+  "branch (spair_pat p1 p2)\<cdot>r\<cdot>\<bottom> = \<bottom>"
+  "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk>
+     \<Longrightarrow> branch (spair_pat p1 p2)\<cdot>r\<cdot>(:x, y:) =
+         branch (cpair_pat p1 p2)\<cdot>r\<cdot>(x, y)"
+by (simp_all add: branch_def spair_pat_def)
+
+lemma sinl_pat [simp]:
+  "branch (sinl_pat p)\<cdot>r\<cdot>\<bottom> = \<bottom>"
+  "x \<noteq> \<bottom> \<Longrightarrow> branch (sinl_pat p)\<cdot>r\<cdot>(sinl\<cdot>x) = branch p\<cdot>r\<cdot>x"
+  "y \<noteq> \<bottom> \<Longrightarrow> branch (sinl_pat p)\<cdot>r\<cdot>(sinr\<cdot>y) = fail"
+by (simp_all add: branch_def sinl_pat_def)
+
+lemma sinr_pat [simp]:
+  "branch (sinr_pat p)\<cdot>r\<cdot>\<bottom> = \<bottom>"
+  "x \<noteq> \<bottom> \<Longrightarrow> branch (sinr_pat p)\<cdot>r\<cdot>(sinl\<cdot>x) = fail"
+  "y \<noteq> \<bottom> \<Longrightarrow> branch (sinr_pat p)\<cdot>r\<cdot>(sinr\<cdot>y) = branch p\<cdot>r\<cdot>y"
+by (simp_all add: branch_def sinr_pat_def)
+
+lemma up_pat [simp]:
+  "branch (up_pat p)\<cdot>r\<cdot>\<bottom> = \<bottom>"
+  "branch (up_pat p)\<cdot>r\<cdot>(up\<cdot>x) = branch p\<cdot>r\<cdot>x"
+by (simp_all add: branch_def up_pat_def)
+
+lemma TT_pat [simp]:
+  "branch TT_pat\<cdot>(unit_when\<cdot>r)\<cdot>\<bottom> = \<bottom>"
+  "branch TT_pat\<cdot>(unit_when\<cdot>r)\<cdot>TT = succeed\<cdot>r"
+  "branch TT_pat\<cdot>(unit_when\<cdot>r)\<cdot>FF = fail"
+by (simp_all add: branch_def TT_pat_def)
+
+lemma FF_pat [simp]:
+  "branch FF_pat\<cdot>(unit_when\<cdot>r)\<cdot>\<bottom> = \<bottom>"
+  "branch FF_pat\<cdot>(unit_when\<cdot>r)\<cdot>TT = fail"
+  "branch FF_pat\<cdot>(unit_when\<cdot>r)\<cdot>FF = succeed\<cdot>r"
+by (simp_all add: branch_def FF_pat_def)
+
+lemma ONE_pat [simp]:
+  "branch ONE_pat\<cdot>(unit_when\<cdot>r)\<cdot>\<bottom> = \<bottom>"
+  "branch ONE_pat\<cdot>(unit_when\<cdot>r)\<cdot>ONE = succeed\<cdot>r"
+by (simp_all add: branch_def ONE_pat_def)
+
+
+subsection {* Wildcards, as-patterns, and lazy patterns *}
+
+definition
+  wild_pat :: "'a \<rightarrow> unit match" where
+  "wild_pat = (\<Lambda> x. succeed\<cdot>())"
+
+definition
+  as_pat :: "('a \<rightarrow> 'b match) \<Rightarrow> 'a \<rightarrow> ('a \<times> 'b) match" where
+  "as_pat p = (\<Lambda> x. match_case\<cdot>fail\<cdot>(\<Lambda> a. succeed\<cdot>(x, a))\<cdot>(p\<cdot>x))"
+
+definition
+  lazy_pat :: "('a \<rightarrow> 'b::pcpo match) \<Rightarrow> ('a \<rightarrow> 'b match)" where
+  "lazy_pat p = (\<Lambda> x. succeed\<cdot>(cases\<cdot>(p\<cdot>x)))"
+
+text {* Parse translations (patterns) *}
+translations
+  "_pat _" => "CONST wild_pat"
+
+text {* Parse translations (variables) *}
+translations
+  "_variable _ r" => "_variable _noargs r"
+
+text {* Print translations *}
+translations
+  "_" <= "_match (CONST wild_pat) _noargs"
+
+lemma wild_pat [simp]: "branch wild_pat\<cdot>(unit_when\<cdot>r)\<cdot>x = succeed\<cdot>r"
+by (simp add: branch_def wild_pat_def)
+
+lemma as_pat [simp]:
+  "branch (as_pat p)\<cdot>(csplit\<cdot>r)\<cdot>x = branch p\<cdot>(r\<cdot>x)\<cdot>x"
+apply (simp add: branch_def as_pat_def)
+apply (cases "p\<cdot>x", simp_all)
+done
+
+lemma lazy_pat [simp]:
+  "branch p\<cdot>r\<cdot>x = \<bottom> \<Longrightarrow> branch (lazy_pat p)\<cdot>r\<cdot>x = succeed\<cdot>(r\<cdot>\<bottom>)"
+  "branch p\<cdot>r\<cdot>x = fail \<Longrightarrow> branch (lazy_pat p)\<cdot>r\<cdot>x = succeed\<cdot>(r\<cdot>\<bottom>)"
+  "branch p\<cdot>r\<cdot>x = succeed\<cdot>s \<Longrightarrow> branch (lazy_pat p)\<cdot>r\<cdot>x = succeed\<cdot>s"
+apply (simp_all add: branch_def lazy_pat_def)
+apply (cases "p\<cdot>x", simp_all)+
+done
+
+subsection {* Examples *}
+
+term "Case t of (:up\<cdot>(sinl\<cdot>x), sinr\<cdot>y:) \<Rightarrow> (x, y)"
+
+term "\<Lambda> t. Case t of up\<cdot>(sinl\<cdot>a) \<Rightarrow> a | up\<cdot>(sinr\<cdot>b) \<Rightarrow> b"
+
+term "\<Lambda> t. Case t of (:up\<cdot>(sinl\<cdot>_), sinr\<cdot>x:) \<Rightarrow> x"
+
+subsection {* ML code for generating definitions *}
+
+ML {*
+local open HOLCF_Library in
+
+val beta_rules =
+  @{thms beta_cfun cont_id cont_const cont2cont_Rep_CFun cont2cont_LAM'} @
+  @{thms cont2cont_fst cont2cont_snd cont2cont_Pair};
+
+val beta_ss = HOL_basic_ss addsimps (simp_thms @ beta_rules);
+
+fun define_consts
+    (specs : (binding * term * mixfix) list)
+    (thy : theory)
+    : (term list * thm list) * theory =
+  let
+    fun mk_decl (b, t, mx) = (b, fastype_of t, mx);
+    val decls = map mk_decl specs;
+    val thy = Cont_Consts.add_consts decls thy;
+    fun mk_const (b, T, mx) = Const (Sign.full_name thy b, T);
+    val consts = map mk_const decls;
+    fun mk_def c (b, t, mx) =
+      (Binding.suffix_name "_def" b, Logic.mk_equals (c, t));
+    val defs = map2 mk_def consts specs;
+    val (def_thms, thy) =
+      PureThy.add_defs false (map Thm.no_attributes defs) thy;
+  in
+    ((consts, def_thms), thy)
+  end;
+
+fun prove
+    (thy : theory)
+    (defs : thm list)
+    (goal : term)
+    (tacs : {prems: thm list, context: Proof.context} -> tactic list)
+    : thm =
+  let
+    fun tac {prems, context} =
+      rewrite_goals_tac defs THEN
+      EVERY (tacs {prems = map (rewrite_rule defs) prems, context = context})
+  in
+    Goal.prove_global thy [] [] goal tac
+  end;
+
+fun get_vars_avoiding
+    (taken : string list)
+    (args : (bool * typ) list)
+    : (term list * term list) =
+  let
+    val Ts = map snd args;
+    val ns = Name.variant_list taken (Datatype_Prop.make_tnames Ts);
+    val vs = map Free (ns ~~ Ts);
+    val nonlazy = map snd (filter_out (fst o fst) (args ~~ vs));
+  in
+    (vs, nonlazy)
+  end;
+
+(******************************************************************************)
+(************** definitions and theorems for pattern combinators **************)
+(******************************************************************************)
+
+fun add_pattern_combinators
+    (bindings : binding list)
+    (spec : (term * (bool * typ) list) list)
+    (lhsT : typ)
+    (exhaust : thm)
+    (case_const : typ -> term)
+    (case_rews : thm list)
+    (thy : theory) =
+  let
+
+    (* utility functions *)
+    fun mk_pair_pat (p1, p2) =
+      let
+        val T1 = fastype_of p1;
+        val T2 = fastype_of p2;
+        val (U1, V1) = apsnd dest_matchT (dest_cfunT T1);
+        val (U2, V2) = apsnd dest_matchT (dest_cfunT T2);
+        val pat_typ = [T1, T2] --->
+            (mk_prodT (U1, U2) ->> mk_matchT (mk_prodT (V1, V2)));
+        val pat_const = Const (@{const_name cpair_pat}, pat_typ);
+      in
+        pat_const $ p1 $ p2
+      end;
+    fun mk_tuple_pat [] = succeed_const HOLogic.unitT
+      | mk_tuple_pat ps = foldr1 mk_pair_pat ps;
+    fun branch_const (T,U,V) = 
+      Const (@{const_name branch},
+        (T ->> mk_matchT U) --> (U ->> V) ->> T ->> mk_matchT V);
+
+    (* define pattern combinators *)
+    local
+      val tns = map (fst o dest_TFree) (snd (dest_Type lhsT));
+
+      fun pat_eqn (i, (bind, (con, args))) : binding * term * mixfix =
+        let
+          val pat_bind = Binding.suffix_name "_pat" bind;
+          val Ts = map snd args;
+          val Vs =
+              (map (K "'t") args)
+              |> Datatype_Prop.indexify_names
+              |> Name.variant_list tns
+              |> map (fn t => TFree (t, @{sort pcpo}));
+          val patNs = Datatype_Prop.indexify_names (map (K "pat") args);
+          val patTs = map2 (fn T => fn V => T ->> mk_matchT V) Ts Vs;
+          val pats = map Free (patNs ~~ patTs);
+          val fail = mk_fail (mk_tupleT Vs);
+          val (vs, nonlazy) = get_vars_avoiding patNs args;
+          val rhs = big_lambdas vs (mk_tuple_pat pats ` mk_tuple vs);
+          fun one_fun (j, (_, args')) =
+            let
+              val (vs', nonlazy) = get_vars_avoiding patNs args';
+            in if i = j then rhs else big_lambdas vs' fail end;
+          val funs = map_index one_fun spec;
+          val body = list_ccomb (case_const (mk_matchT (mk_tupleT Vs)), funs);
+        in
+          (pat_bind, lambdas pats body, NoSyn)
+        end;
+    in
+      val ((pat_consts, pat_defs), thy) =
+          define_consts (map_index pat_eqn (bindings ~~ spec)) thy
+    end;
+
+    (* syntax translations for pattern combinators *)
+    local
+      open Syntax
+      fun syntax c = Syntax.mark_const (fst (dest_Const c));
+      fun app s (l, r) = Syntax.mk_appl (Constant s) [l, r];
+      val capp = app @{const_syntax Rep_CFun};
+      val capps = Library.foldl capp
+
+      fun app_var x = Syntax.mk_appl (Constant "_variable") [x, Variable "rhs"];
+      fun app_pat x = Syntax.mk_appl (Constant "_pat") [x];
+      fun args_list [] = Constant "_noargs"
+        | args_list xs = foldr1 (app "_args") xs;
+      fun one_case_trans (pat, (con, args)) =
+        let
+          val cname = Constant (syntax con);
+          val pname = Constant (syntax pat);
+          val ns = 1 upto length args;
+          val xs = map (fn n => Variable ("x"^(string_of_int n))) ns;
+          val ps = map (fn n => Variable ("p"^(string_of_int n))) ns;
+          val vs = map (fn n => Variable ("v"^(string_of_int n))) ns;
+        in
+          [ParseRule (app_pat (capps (cname, xs)),
+                      mk_appl pname (map app_pat xs)),
+           ParseRule (app_var (capps (cname, xs)),
+                      app_var (args_list xs)),
+           PrintRule (capps (cname, ListPair.map (app "_match") (ps,vs)),
+                      app "_match" (mk_appl pname ps, args_list vs))]
+        end;
+      val trans_rules : Syntax.ast Syntax.trrule list =
+          maps one_case_trans (pat_consts ~~ spec);
+    in
+      val thy = Sign.add_trrules_i trans_rules thy;
+    end;
+
+    (* prove strictness and reduction rules of pattern combinators *)
+    local
+      val tns = map (fst o dest_TFree) (snd (dest_Type lhsT));
+      val rn = Name.variant tns "'r";
+      val R = TFree (rn, @{sort pcpo});
+      fun pat_lhs (pat, args) =
+        let
+          val Ts = map snd args;
+          val Vs =
+              (map (K "'t") args)
+              |> Datatype_Prop.indexify_names
+              |> Name.variant_list (rn::tns)
+              |> map (fn t => TFree (t, @{sort pcpo}));
+          val patNs = Datatype_Prop.indexify_names (map (K "pat") args);
+          val patTs = map2 (fn T => fn V => T ->> mk_matchT V) Ts Vs;
+          val pats = map Free (patNs ~~ patTs);
+          val k = Free ("rhs", mk_tupleT Vs ->> R);
+          val branch1 = branch_const (lhsT, mk_tupleT Vs, R);
+          val fun1 = (branch1 $ list_comb (pat, pats)) ` k;
+          val branch2 = branch_const (mk_tupleT Ts, mk_tupleT Vs, R);
+          val fun2 = (branch2 $ mk_tuple_pat pats) ` k;
+          val taken = "rhs" :: patNs;
+        in (fun1, fun2, taken) end;
+      fun pat_strict (pat, (con, args)) =
+        let
+          val (fun1, fun2, taken) = pat_lhs (pat, args);
+          val defs = @{thm branch_def} :: pat_defs;
+          val goal = mk_trp (mk_strict fun1);
+          val rules = @{thms match_case_simps} @ case_rews;
+          val tacs = [simp_tac (beta_ss addsimps rules) 1];
+        in prove thy defs goal (K tacs) end;
+      fun pat_apps (i, (pat, (con, args))) =
+        let
+          val (fun1, fun2, taken) = pat_lhs (pat, args);
+          fun pat_app (j, (con', args')) =
+            let
+              val (vs, nonlazy) = get_vars_avoiding taken args';
+              val con_app = list_ccomb (con', vs);
+              val assms = map (mk_trp o mk_defined) nonlazy;
+              val rhs = if i = j then fun2 ` mk_tuple vs else mk_fail R;
+              val concl = mk_trp (mk_eq (fun1 ` con_app, rhs));
+              val goal = Logic.list_implies (assms, concl);
+              val defs = @{thm branch_def} :: pat_defs;
+              val rules = @{thms match_case_simps} @ case_rews;
+              val tacs = [asm_simp_tac (beta_ss addsimps rules) 1];
+            in prove thy defs goal (K tacs) end;
+        in map_index pat_app spec end;
+    in
+      val pat_stricts = map pat_strict (pat_consts ~~ spec);
+      val pat_apps = flat (map_index pat_apps (pat_consts ~~ spec));
+    end;
+
+  in
+    (pat_stricts @ pat_apps, thy)
+  end
+
+end
+*}
+
+(*
+Cut from HOLCF/Tools/domain_constructors.ML
+in function add_domain_constructors:
+
+    ( * define and prove theorems for pattern combinators * )
+    val (pat_thms : thm list, thy : theory) =
+      let
+        val bindings = map #1 spec;
+        fun prep_arg (lazy, sel, T) = (lazy, T);
+        fun prep_con c (b, args, mx) = (c, map prep_arg args);
+        val pat_spec = map2 prep_con con_consts spec;
+      in
+        add_pattern_combinators bindings pat_spec lhsT
+          exhaust case_const cases thy
+      end
+
+*)
+
+end