src/HOL/Library/While_Combinator.thy
changeset 11549 e7265e70fd7c
parent 11284 981ea92a86dd
child 11626 0dbfb578bf75
--- a/src/HOL/Library/While_Combinator.thy	Tue Sep 04 17:31:18 2001 +0200
+++ b/src/HOL/Library/While_Combinator.thy	Tue Sep 04 21:10:57 2001 +0200
@@ -79,14 +79,14 @@
       wf {(t, s). P s \<and> b s \<and> t = c s} |] ==>
     P s --> Q (while b c s)"
 proof -
-  case antecedent
+  case rule_context
   assume wf: "wf {(t, s). P s \<and> b s \<and> t = c s}"
   show ?thesis
     apply (induct s rule: wf [THEN wf_induct])
     apply simp
     apply clarify
     apply (subst while_unfold)
-    apply (simp add: antecedent)
+    apply (simp add: rule_context)
     done
 qed