src/HOL/Word/BinBoolList.thy
changeset 24333 e77ea0ea7f2c
child 24350 4d74f37c6367
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Word/BinBoolList.thy	Mon Aug 20 04:34:31 2007 +0200
@@ -0,0 +1,1158 @@
+(* 
+  ID:     $Id$
+  Author: Jeremy Dawson, NICTA
+
+  contains theorems to do with integers, expressed using Pls, Min, BIT,
+  theorems linking them to lists of booleans, and repeated splitting 
+  and concatenation.
+*) 
+
+header "Bool lists and integers"
+
+theory BinBoolList imports BinOperations begin
+
+section "Arithmetic in terms of bool lists"
+
+consts (* arithmetic operations in terms of the reversed bool list,
+  assuming input list(s) the same length, and don't extend them *)
+  rbl_succ :: "bool list => bool list"
+  rbl_pred :: "bool list => bool list"
+  rbl_add :: "bool list => bool list => bool list"
+  rbl_mult :: "bool list => bool list => bool list"
+
+primrec 
+  Nil: "rbl_succ Nil = Nil"
+  Cons: "rbl_succ (x # xs) = (if x then False # rbl_succ xs else True # xs)"
+
+primrec 
+  Nil : "rbl_pred Nil = Nil"
+  Cons : "rbl_pred (x # xs) = (if x then False # xs else True # rbl_pred xs)"
+
+primrec (* result is length of first arg, second arg may be longer *)
+  Nil : "rbl_add Nil x = Nil"
+  Cons : "rbl_add (y # ys) x = (let ws = rbl_add ys (tl x) in 
+    (y ~= hd x) # (if hd x & y then rbl_succ ws else ws))"
+
+primrec (* result is length of first arg, second arg may be longer *)
+  Nil : "rbl_mult Nil x = Nil"
+  Cons : "rbl_mult (y # ys) x = (let ws = False # rbl_mult ys x in 
+    if y then rbl_add ws x else ws)"
+
+lemma tl_take: "tl (take n l) = take (n - 1) (tl l)"
+  apply (cases n, clarsimp)
+  apply (cases l, auto)
+  done
+
+lemma take_butlast [rule_format] :
+  "ALL n. n < length l --> take n (butlast l) = take n l"
+  apply (induct l, clarsimp)
+  apply clarsimp
+  apply (case_tac n)
+  apply auto
+  done
+
+lemma butlast_take [rule_format] :
+  "ALL n. n <= length l --> butlast (take n l) = take (n - 1) l"
+  apply (induct l, clarsimp)
+  apply clarsimp
+  apply (case_tac "n")
+   apply safe
+   apply simp_all
+  apply (case_tac "nat")
+   apply auto
+  done
+
+lemma butlast_drop [rule_format] :
+  "ALL n. butlast (drop n l) = drop n (butlast l)"
+  apply (induct l)
+   apply clarsimp
+  apply clarsimp
+  apply safe
+   apply ((case_tac n, auto)[1])+
+  done
+
+lemma butlast_power:
+  "(butlast ^ n) bl = take (length bl - n) bl"
+  by (induct n) (auto simp: butlast_take)
+
+lemma bin_to_bl_aux_Pls_minus_simp:
+  "0 < n ==> bin_to_bl_aux n Numeral.Pls bl = 
+    bin_to_bl_aux (n - 1) Numeral.Pls (False # bl)"
+  by (cases n) auto
+
+lemma bin_to_bl_aux_Min_minus_simp:
+  "0 < n ==> bin_to_bl_aux n Numeral.Min bl = 
+    bin_to_bl_aux (n - 1) Numeral.Min (True # bl)"
+  by (cases n) auto
+
+lemma bin_to_bl_aux_Bit_minus_simp:
+  "0 < n ==> bin_to_bl_aux n (w BIT b) bl = 
+    bin_to_bl_aux (n - 1) w ((b = bit.B1) # bl)"
+  by (cases n) auto
+
+declare bin_to_bl_aux_Pls_minus_simp [simp]
+  bin_to_bl_aux_Min_minus_simp [simp]
+  bin_to_bl_aux_Bit_minus_simp [simp]
+
+(** link between bin and bool list **)
+
+lemma bl_to_bin_aux_append [rule_format] : 
+  "ALL w. bl_to_bin_aux w (bs @ cs) = bl_to_bin_aux (bl_to_bin_aux w bs) cs"
+  by (induct bs) auto
+
+lemma bin_to_bl_aux_append [rule_format] : 
+  "ALL w bs. bin_to_bl_aux n w bs @ cs = bin_to_bl_aux n w (bs @ cs)"
+  by (induct n) auto
+
+lemma bl_to_bin_append: 
+  "bl_to_bin (bs @ cs) = bl_to_bin_aux (bl_to_bin bs) cs"
+  unfolding bl_to_bin_def by (rule bl_to_bin_aux_append)
+
+lemma bin_to_bl_aux_alt: 
+  "bin_to_bl_aux n w bs = bin_to_bl n w @ bs" 
+  unfolding bin_to_bl_def by (simp add : bin_to_bl_aux_append)
+
+lemma bin_to_bl_0: "bin_to_bl 0 bs = []"
+  unfolding bin_to_bl_def by auto
+
+lemma size_bin_to_bl_aux [rule_format] : 
+  "ALL w bs. size (bin_to_bl_aux n w bs) = n + length bs"
+  by (induct n) auto
+
+lemma size_bin_to_bl: "size (bin_to_bl n w) = n" 
+  unfolding bin_to_bl_def by (simp add : size_bin_to_bl_aux)
+
+lemma bin_bl_bin' [rule_format] : 
+  "ALL w bs. bl_to_bin (bin_to_bl_aux n w bs) = 
+    bl_to_bin_aux (bintrunc n w) bs"
+  by (induct n) (auto simp add : bl_to_bin_def)
+
+lemma bin_bl_bin: "bl_to_bin (bin_to_bl n w) = bintrunc n w"
+  unfolding bin_to_bl_def bin_bl_bin' by auto
+
+lemma bl_bin_bl' [rule_format] :
+  "ALL w n. bin_to_bl (n + length bs) (bl_to_bin_aux w bs) = 
+    bin_to_bl_aux n w bs"
+  apply (induct "bs")
+   apply auto
+    apply (simp_all only : add_Suc [symmetric])
+    apply (auto simp add : bin_to_bl_def)
+  done
+
+lemma bl_bin_bl: "bin_to_bl (length bs) (bl_to_bin bs) = bs"
+  unfolding bl_to_bin_def
+  apply (rule box_equals)
+    apply (rule bl_bin_bl')
+   prefer 2
+   apply (rule bin_to_bl_aux.Z)
+  apply simp
+  done
+  
+declare 
+  bin_to_bl_0 [simp] 
+  size_bin_to_bl [simp] 
+  bin_bl_bin [simp] 
+  bl_bin_bl [simp]
+
+lemma bl_to_bin_inj:
+  "bl_to_bin bs = bl_to_bin cs ==> length bs = length cs ==> bs = cs"
+  apply (rule_tac box_equals)
+    defer
+    apply (rule bl_bin_bl)
+   apply (rule bl_bin_bl)
+  apply simp
+  done
+
+lemma bl_to_bin_False: "bl_to_bin (False # bl) = bl_to_bin bl"
+  unfolding bl_to_bin_def by auto
+  
+lemma bl_to_bin_Nil: "bl_to_bin [] = Numeral.Pls"
+  unfolding bl_to_bin_def by auto
+
+lemma bin_to_bl_Pls_aux [rule_format] : 
+  "ALL bl. bin_to_bl_aux n Numeral.Pls bl = replicate n False @ bl"
+  by (induct n) (auto simp: replicate_app_Cons_same)
+
+lemma bin_to_bl_Pls: "bin_to_bl n Numeral.Pls = replicate n False"
+  unfolding bin_to_bl_def by (simp add : bin_to_bl_Pls_aux)
+
+lemma bin_to_bl_Min_aux [rule_format] : 
+  "ALL bl. bin_to_bl_aux n Numeral.Min bl = replicate n True @ bl"
+  by (induct n) (auto simp: replicate_app_Cons_same)
+
+lemma bin_to_bl_Min: "bin_to_bl n Numeral.Min = replicate n True"
+  unfolding bin_to_bl_def by (simp add : bin_to_bl_Min_aux)
+
+lemma bl_to_bin_rep_F: 
+  "bl_to_bin (replicate n False @ bl) = bl_to_bin bl"
+  apply (simp add: bin_to_bl_Pls_aux [symmetric] bin_bl_bin')
+  apply (simp add: bl_to_bin_def)
+  done
+
+lemma bin_to_bl_trunc:
+  "n <= m ==> bin_to_bl n (bintrunc m w) = bin_to_bl n w"
+  by (auto intro: bl_to_bin_inj)
+
+declare 
+  bin_to_bl_trunc [simp] 
+  bl_to_bin_False [simp] 
+  bl_to_bin_Nil [simp]
+
+lemma bin_to_bl_aux_bintr [rule_format] :
+  "ALL m bin bl. bin_to_bl_aux n (bintrunc m bin) bl = 
+    replicate (n - m) False @ bin_to_bl_aux (min n m) bin bl"
+  apply (induct_tac "n")
+   apply clarsimp
+  apply clarsimp
+  apply (case_tac "m")
+   apply (clarsimp simp: bin_to_bl_Pls_aux) 
+   apply (erule thin_rl)
+   apply (induct_tac n)   
+    apply auto
+  done
+
+lemmas bin_to_bl_bintr = 
+  bin_to_bl_aux_bintr [where bl = "[]", folded bin_to_bl_def]
+
+lemma bl_to_bin_rep_False: "bl_to_bin (replicate n False) = Numeral.Pls"
+  by (induct n) auto
+
+lemma len_bin_to_bl_aux [rule_format] : 
+  "ALL w bs. length (bin_to_bl_aux n w bs) = n + length bs"
+  by (induct "n") auto
+
+lemma len_bin_to_bl [simp]: "length (bin_to_bl n w) = n"
+  unfolding bin_to_bl_def len_bin_to_bl_aux by auto
+  
+lemma sign_bl_bin' [rule_format] : 
+  "ALL w. bin_sign (bl_to_bin_aux w bs) = bin_sign w"
+  by (induct bs) auto
+  
+lemma sign_bl_bin: "bin_sign (bl_to_bin bs) = Numeral.Pls"
+  unfolding bl_to_bin_def by (simp add : sign_bl_bin')
+  
+lemma bl_sbin_sign_aux [rule_format] : 
+  "ALL w bs. hd (bin_to_bl_aux (Suc n) w bs) = 
+    (bin_sign (sbintrunc n w) = Numeral.Min)"
+  apply (induct "n")
+   apply clarsimp
+   apply (case_tac w rule: bin_exhaust)
+   apply (simp split add : bit.split)
+  apply clarsimp
+  done
+    
+lemma bl_sbin_sign: 
+  "hd (bin_to_bl (Suc n) w) = (bin_sign (sbintrunc n w) = Numeral.Min)"
+  unfolding bin_to_bl_def by (rule bl_sbin_sign_aux)
+
+lemma bin_nth_of_bl_aux [rule_format] : 
+  "ALL w. bin_nth (bl_to_bin_aux w bl) n = 
+    (n < size bl & rev bl ! n | n >= length bl & bin_nth w (n - size bl))"
+  apply (induct_tac bl)
+   apply clarsimp
+  apply clarsimp
+  apply (cut_tac x=n and y="size list" in linorder_less_linear)
+  apply (erule disjE, simp add: nth_append)+
+  apply (simp add: nth_append)
+  done
+
+lemma bin_nth_of_bl: "bin_nth (bl_to_bin bl) n = (n < length bl & rev bl ! n)";
+  unfolding bl_to_bin_def by (simp add : bin_nth_of_bl_aux)
+
+lemma bin_nth_bl [rule_format] : "ALL m w. n < m --> 
+    bin_nth w n = nth (rev (bin_to_bl m w)) n"
+  apply (induct n)
+   apply clarsimp
+   apply (case_tac m, clarsimp)
+   apply (clarsimp simp: bin_to_bl_def)
+   apply (simp add: bin_to_bl_aux_alt)
+  apply clarsimp
+  apply (case_tac m, clarsimp)
+  apply (clarsimp simp: bin_to_bl_def)
+  apply (simp add: bin_to_bl_aux_alt)
+  done
+
+lemma nth_rev [rule_format] : 
+  "n < length xs --> rev xs ! n = xs ! (length xs - 1 - n)"
+  apply (induct_tac "xs")
+   apply simp
+  apply (clarsimp simp add : nth_append nth.simps split add : nat.split)
+  apply (rule_tac f = "%n. list ! n" in arg_cong) 
+  apply arith
+  done
+
+lemmas nth_rev_alt = nth_rev [where xs = "rev ?ys", simplified]
+
+lemma nth_bin_to_bl_aux [rule_format] : 
+  "ALL w n bl. n < m + length bl --> (bin_to_bl_aux m w bl) ! n = 
+    (if n < m then bin_nth w (m - 1 - n) else bl ! (n - m))"
+  apply (induct_tac "m")
+   apply clarsimp
+  apply clarsimp
+  apply (case_tac w rule: bin_exhaust)
+  apply clarsimp
+  apply (case_tac "na - n")
+   apply arith
+  apply simp
+  apply (rule_tac f = "%n. bl ! n" in arg_cong) 
+  apply arith
+  done
+  
+lemma nth_bin_to_bl: "n < m ==> (bin_to_bl m w) ! n = bin_nth w (m - Suc n)"
+  unfolding bin_to_bl_def by (simp add : nth_bin_to_bl_aux)
+
+lemma bl_to_bin_lt2p_aux [rule_format] : 
+  "ALL w. bl_to_bin_aux w bs < (w + 1) * (2 ^ length bs)"
+  apply (induct "bs")
+   apply clarsimp
+  apply clarsimp
+  apply safe
+   apply (erule allE, erule xtr8 [rotated],
+          simp add: Bit_def ring_simps cong add : number_of_False_cong)+
+  done
+
+lemma bl_to_bin_lt2p: "bl_to_bin bs < (2 ^ length bs)"
+  apply (unfold bl_to_bin_def)
+  apply (rule xtr1)
+   prefer 2
+   apply (rule bl_to_bin_lt2p_aux)
+  apply simp
+  done
+
+lemma bl_to_bin_ge2p_aux [rule_format] : 
+  "ALL w. bl_to_bin_aux w bs >= w * (2 ^ length bs)"
+  apply (induct bs)
+   apply clarsimp
+  apply clarsimp
+  apply safe
+   apply (erule allE, erule less_eq_less.order_trans [rotated],
+          simp add: Bit_def ring_simps cong add : number_of_False_cong)+
+  done
+
+lemma bl_to_bin_ge0: "bl_to_bin bs >= 0"
+  apply (unfold bl_to_bin_def)
+  apply (rule xtr4)
+   apply (rule bl_to_bin_ge2p_aux)
+  apply simp
+  done
+
+lemma butlast_rest_bin: 
+  "butlast (bin_to_bl n w) = bin_to_bl (n - 1) (bin_rest w)"
+  apply (unfold bin_to_bl_def)
+  apply (cases w rule: bin_exhaust)
+  apply (cases n, clarsimp)
+  apply clarsimp
+  apply (auto simp add: bin_to_bl_aux_alt)
+  done
+
+lemmas butlast_bin_rest = butlast_rest_bin
+  [where w="bl_to_bin ?bl" and n="length ?bl", simplified]
+
+lemma butlast_rest_bl2bin_aux [rule_format] :
+  "ALL w. bl ~= [] --> 
+    bl_to_bin_aux w (butlast bl) = bin_rest (bl_to_bin_aux w bl)"
+  by (induct bl) auto
+  
+lemma butlast_rest_bl2bin: 
+  "bl_to_bin (butlast bl) = bin_rest (bl_to_bin bl)"
+  apply (unfold bl_to_bin_def)
+  apply (cases bl)
+   apply (auto simp add: butlast_rest_bl2bin_aux)
+  done
+
+lemma trunc_bl2bin_aux [rule_format] : 
+  "ALL w. bintrunc m (bl_to_bin_aux w bl) = 
+    bl_to_bin_aux (bintrunc (m - length bl) w) (drop (length bl - m) bl)"
+  apply (induct_tac bl)
+   apply clarsimp
+  apply clarsimp
+  apply safe
+   apply (case_tac "m - size list")
+    apply (simp add : diff_is_0_eq [THEN iffD1, THEN Suc_diff_le])
+   apply simp
+   apply (rule_tac f = "%nat. bl_to_bin_aux (bintrunc nat w BIT bit.B1) list" 
+                   in arg_cong) 
+   apply simp
+  apply (case_tac "m - size list")
+   apply (simp add: diff_is_0_eq [THEN iffD1, THEN Suc_diff_le])
+  apply simp
+  apply (rule_tac f = "%nat. bl_to_bin_aux (bintrunc nat w BIT bit.B0) list" 
+                  in arg_cong) 
+  apply simp
+  done
+
+lemma trunc_bl2bin: 
+  "bintrunc m (bl_to_bin bl) = bl_to_bin (drop (length bl - m) bl)"
+  unfolding bl_to_bin_def by (simp add : trunc_bl2bin_aux)
+  
+lemmas trunc_bl2bin_len [simp] =
+  trunc_bl2bin [of "length bl" bl, simplified, standard]  
+
+lemma bl2bin_drop: 
+  "bl_to_bin (drop k bl) = bintrunc (length bl - k) (bl_to_bin bl)"
+  apply (rule trans)
+   prefer 2
+   apply (rule trunc_bl2bin [symmetric])
+  apply (cases "k <= length bl")
+   apply auto
+  done
+
+lemma nth_rest_power_bin [rule_format] :
+  "ALL n. bin_nth ((bin_rest ^ k) w) n = bin_nth w (n + k)"
+  apply (induct k, clarsimp)
+  apply clarsimp
+  apply (simp only: bin_nth.Suc [symmetric] add_Suc)
+  done
+
+lemma take_rest_power_bin:
+  "m <= n ==> take m (bin_to_bl n w) = bin_to_bl m ((bin_rest ^ (n - m)) w)" 
+  apply (rule nth_equalityI)
+   apply simp
+  apply (clarsimp simp add: nth_bin_to_bl nth_rest_power_bin)
+  done
+
+lemma hd_butlast: "size xs > 1 ==> hd (butlast xs) = hd xs"
+  by (cases xs) auto
+
+lemma last_bin_last' [rule_format] : 
+  "ALL w. size xs > 0 --> last xs = (bin_last (bl_to_bin_aux w xs) = bit.B1)" 
+  by (induct xs) auto
+
+lemma last_bin_last: 
+  "size xs > 0 ==> last xs = (bin_last (bl_to_bin xs) = bit.B1)" 
+  unfolding bl_to_bin_def by (erule last_bin_last')
+  
+lemma bin_last_last: 
+  "bin_last w = (if last (bin_to_bl (Suc n) w) then bit.B1 else bit.B0)" 
+  apply (unfold bin_to_bl_def)
+  apply simp
+  apply (auto simp add: bin_to_bl_aux_alt)
+  done
+
+(** links between bit-wise operations and operations on bool lists **)
+    
+lemma app2_Nil [simp]: "app2 f [] ys = []"
+  unfolding app2_def by auto
+
+lemma app2_Cons [simp]:
+  "app2 f (x # xs) (y # ys) = f x y # app2 f xs ys"
+  unfolding app2_def by auto
+
+lemma bl_xor_aux_bin [rule_format] : "ALL v w bs cs. 
+    app2 (%x y. x ~= y) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = 
+    bin_to_bl_aux n (int_xor v w) (app2 (%x y. x ~= y) bs cs)"
+  apply (induct_tac n)
+   apply safe
+   apply simp
+  apply (case_tac v rule: bin_exhaust)
+  apply (case_tac w rule: bin_exhaust)
+  apply clarsimp
+  apply (case_tac b)
+  apply (case_tac ba, safe, simp_all)+
+  done
+    
+lemma bl_or_aux_bin [rule_format] : "ALL v w bs cs. 
+    app2 (op | ) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = 
+    bin_to_bl_aux n (int_or v w) (app2 (op | ) bs cs)" 
+  apply (induct_tac n)
+   apply safe
+   apply simp
+  apply (case_tac v rule: bin_exhaust)
+  apply (case_tac w rule: bin_exhaust)
+  apply clarsimp
+  apply (case_tac b)
+  apply (case_tac ba, safe, simp_all)+
+  done
+    
+lemma bl_and_aux_bin [rule_format] : "ALL v w bs cs. 
+    app2 (op & ) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = 
+    bin_to_bl_aux n (int_and v w) (app2 (op & ) bs cs)" 
+  apply (induct_tac n)
+   apply safe
+   apply simp
+  apply (case_tac v rule: bin_exhaust)
+  apply (case_tac w rule: bin_exhaust)
+  apply clarsimp
+  apply (case_tac b)
+  apply (case_tac ba, safe, simp_all)+
+  done
+    
+lemma bl_not_aux_bin [rule_format] : 
+  "ALL w cs. map Not (bin_to_bl_aux n w cs) = 
+    bin_to_bl_aux n (int_not w) (map Not cs)"
+  apply (induct n)
+   apply clarsimp
+  apply clarsimp
+  apply (case_tac w rule: bin_exhaust)
+  apply (case_tac b)
+   apply auto
+  done
+
+lemmas bl_not_bin = bl_not_aux_bin
+  [where cs = "[]", unfolded bin_to_bl_def [symmetric] map.simps]
+
+lemmas bl_and_bin = bl_and_aux_bin [where bs="[]" and cs="[]", 
+                                    unfolded app2_Nil, folded bin_to_bl_def]
+
+lemmas bl_or_bin = bl_or_aux_bin [where bs="[]" and cs="[]", 
+                                  unfolded app2_Nil, folded bin_to_bl_def]
+
+lemmas bl_xor_bin = bl_xor_aux_bin [where bs="[]" and cs="[]", 
+                                    unfolded app2_Nil, folded bin_to_bl_def]
+
+lemma drop_bin2bl_aux [rule_format] : 
+  "ALL m bin bs. drop m (bin_to_bl_aux n bin bs) = 
+    bin_to_bl_aux (n - m) bin (drop (m - n) bs)"
+  apply (induct n, clarsimp)
+  apply clarsimp
+  apply (case_tac bin rule: bin_exhaust)
+  apply (case_tac "m <= n", simp)
+  apply (case_tac "m - n", simp)
+  apply simp
+  apply (rule_tac f = "%nat. drop nat bs" in arg_cong) 
+  apply simp
+  done
+
+lemma drop_bin2bl: "drop m (bin_to_bl n bin) = bin_to_bl (n - m) bin"
+  unfolding bin_to_bl_def by (simp add : drop_bin2bl_aux)
+
+lemma take_bin2bl_lem1 [rule_format] : 
+  "ALL w bs. take m (bin_to_bl_aux m w bs) = bin_to_bl m w"
+  apply (induct m, clarsimp)
+  apply clarsimp
+  apply (simp add: bin_to_bl_aux_alt)
+  apply (simp add: bin_to_bl_def)
+  apply (simp add: bin_to_bl_aux_alt)
+  done
+
+lemma take_bin2bl_lem [rule_format] : 
+  "ALL w bs. take m (bin_to_bl_aux (m + n) w bs) = 
+    take m (bin_to_bl (m + n) w)"
+  apply (induct n)
+   apply clarify
+   apply (simp_all (no_asm) add: bin_to_bl_def take_bin2bl_lem1)
+  apply simp
+  done
+
+lemma bin_split_take [rule_format] : 
+  "ALL b c. bin_split n c = (a, b) --> 
+    bin_to_bl m a = take m (bin_to_bl (m + n) c)"
+  apply (induct n)
+   apply clarsimp
+  apply (clarsimp simp: Let_def split: ls_splits)
+  apply (simp add: bin_to_bl_def)
+  apply (simp add: take_bin2bl_lem)
+  done
+
+lemma bin_split_take1: 
+  "k = m + n ==> bin_split n c = (a, b) ==> 
+    bin_to_bl m a = take m (bin_to_bl k c)"
+  by (auto elim: bin_split_take)
+  
+lemma nth_takefill [rule_format] : "ALL m l. m < n --> 
+    takefill fill n l ! m = (if m < length l then l ! m else fill)"
+  apply (induct n, clarsimp)
+  apply clarsimp
+  apply (case_tac m)
+   apply (simp split: list.split)
+  apply clarsimp
+  apply (erule allE)+
+  apply (erule (1) impE)
+  apply (simp split: list.split)
+  done
+
+lemma takefill_alt [rule_format] :
+  "ALL l. takefill fill n l = take n l @ replicate (n - length l) fill"
+  by (induct n) (auto split: list.split)
+
+lemma takefill_replicate [simp]:
+  "takefill fill n (replicate m fill) = replicate n fill"
+  by (simp add : takefill_alt replicate_add [symmetric])
+
+lemma takefill_le' [rule_format] :
+  "ALL l n. n = m + k --> takefill x m (takefill x n l) = takefill x m l"
+  by (induct m) (auto split: list.split)
+
+lemma length_takefill [simp]: "length (takefill fill n l) = n"
+  by (simp add : takefill_alt)
+
+lemma take_takefill':
+  "!!w n.  n = k + m ==> take k (takefill fill n w) = takefill fill k w"
+  by (induct k) (auto split add : list.split) 
+
+lemma drop_takefill:
+  "!!w. drop k (takefill fill (m + k) w) = takefill fill m (drop k w)"
+  by (induct k) (auto split add : list.split) 
+
+lemma takefill_le [simp]:
+  "m \<le> n \<Longrightarrow> takefill x m (takefill x n l) = takefill x m l"
+  by (auto simp: le_iff_add takefill_le')
+
+lemma take_takefill [simp]:
+  "m \<le> n \<Longrightarrow> take m (takefill fill n w) = takefill fill m w"
+  by (auto simp: le_iff_add take_takefill')
+ 
+lemma takefill_append:
+  "takefill fill (m + length xs) (xs @ w) = xs @ (takefill fill m w)"
+  by (induct xs) auto
+
+lemma takefill_same': 
+  "l = length xs ==> takefill fill l xs = xs"
+  by clarify (induct xs, auto)
+ 
+lemmas takefill_same [simp] = takefill_same' [OF refl]
+
+lemma takefill_bintrunc:
+  "takefill False n bl = rev (bin_to_bl n (bl_to_bin (rev bl)))"
+  apply (rule nth_equalityI)
+   apply simp
+  apply (clarsimp simp: nth_takefill nth_rev nth_bin_to_bl bin_nth_of_bl)
+  done
+
+lemma bl_bin_bl_rtf:
+  "bin_to_bl n (bl_to_bin bl) = rev (takefill False n (rev bl))"
+  by (simp add : takefill_bintrunc)
+  
+lemmas bl_bin_bl_rep_drop = 
+  bl_bin_bl_rtf [simplified takefill_alt,
+                 simplified, simplified rev_take, simplified]
+
+lemma tf_rev:
+  "n + k = m + length bl ==> takefill x m (rev (takefill y n bl)) = 
+    rev (takefill y m (rev (takefill x k (rev bl))))"
+  apply (rule nth_equalityI)
+   apply (auto simp add: nth_takefill nth_rev)
+  apply (rule_tac f = "%n. bl ! n" in arg_cong) 
+  apply arith 
+  done
+
+lemma takefill_minus:
+  "0 < n ==> takefill fill (Suc (n - 1)) w = takefill fill n w"
+  by auto
+
+lemmas takefill_Suc_cases = 
+  list.cases [THEN takefill.Suc [THEN trans], standard]
+
+lemmas takefill_Suc_Nil = takefill_Suc_cases (1)
+lemmas takefill_Suc_Cons = takefill_Suc_cases (2)
+
+lemmas takefill_minus_simps = takefill_Suc_cases [THEN [2] 
+  takefill_minus [symmetric, THEN trans], standard]
+
+lemmas takefill_pred_simps [simp] =
+  takefill_minus_simps [where n="number_of bin", simplified nobm1, standard]
+
+(* links with function bl_to_bin *)
+
+lemma bl_to_bin_aux_cat: 
+  "!!nv v. bl_to_bin_aux (bin_cat w nv v) bs = 
+    bin_cat w (nv + length bs) (bl_to_bin_aux v bs)"
+  apply (induct bs)
+   apply simp
+  apply (simp add: bin_cat_Suc_Bit [symmetric] del: bin_cat.simps)
+  done
+
+lemma bin_to_bl_aux_cat: 
+  "!!w bs. bin_to_bl_aux (nv + nw) (bin_cat v nw w) bs = 
+    bin_to_bl_aux nv v (bin_to_bl_aux nw w bs)"
+  by (induct nw) auto 
+
+lemmas bl_to_bin_aux_alt = 
+  bl_to_bin_aux_cat [where nv = "0" and v = "Numeral.Pls", 
+    simplified bl_to_bin_def [symmetric], simplified]
+
+lemmas bin_to_bl_cat =
+  bin_to_bl_aux_cat [where bs = "[]", folded bin_to_bl_def]
+
+lemmas bl_to_bin_aux_app_cat = 
+  trans [OF bl_to_bin_aux_append bl_to_bin_aux_alt]
+
+lemmas bin_to_bl_aux_cat_app =
+  trans [OF bin_to_bl_aux_cat bin_to_bl_aux_alt]
+
+lemmas bl_to_bin_app_cat = bl_to_bin_aux_app_cat
+  [where w = "Numeral.Pls", folded bl_to_bin_def]
+
+lemmas bin_to_bl_cat_app = bin_to_bl_aux_cat_app
+  [where bs = "[]", folded bin_to_bl_def]
+
+(* bl_to_bin_app_cat_alt and bl_to_bin_app_cat are easily interderivable *)
+lemma bl_to_bin_app_cat_alt: 
+  "bin_cat (bl_to_bin cs) n w = bl_to_bin (cs @ bin_to_bl n w)"
+  by (simp add : bl_to_bin_app_cat)
+
+lemma mask_lem: "(bl_to_bin (True # replicate n False)) = 
+    Numeral.succ (bl_to_bin (replicate n True))"
+  apply (unfold bl_to_bin_def)
+  apply (induct n)
+   apply simp
+  apply (simp only: Suc_eq_add_numeral_1 replicate_add
+                    append_Cons [symmetric] bl_to_bin_aux_append)
+  apply simp
+  done
+
+(* function bl_of_nth *)
+lemma length_bl_of_nth [simp]: "length (bl_of_nth n f) = n"
+  by (induct n)  auto
+
+lemma nth_bl_of_nth [simp]:
+  "m < n \<Longrightarrow> rev (bl_of_nth n f) ! m = f m"
+  apply (induct n)
+   apply simp
+  apply (clarsimp simp add : nth_append)
+  apply (rule_tac f = "f" in arg_cong) 
+  apply simp
+  done
+
+lemma bl_of_nth_inj: 
+  "(!!k. k < n ==> f k = g k) ==> bl_of_nth n f = bl_of_nth n g"
+  by (induct n)  auto
+
+lemma bl_of_nth_nth_le [rule_format] : "ALL xs. 
+    length xs >= n --> bl_of_nth n (nth (rev xs)) = drop (length xs - n) xs";
+  apply (induct n, clarsimp)
+  apply clarsimp
+  apply (rule trans [OF _ hd_Cons_tl])
+   apply (frule Suc_le_lessD)
+   apply (simp add: nth_rev trans [OF drop_Suc drop_tl, symmetric])
+   apply (subst hd_drop_conv_nth)
+     apply force
+    apply simp_all
+  apply (rule_tac f = "%n. drop n xs" in arg_cong) 
+  apply simp
+  done
+
+lemmas bl_of_nth_nth [simp] = order_refl [THEN bl_of_nth_nth_le, simplified]
+
+lemma size_rbl_pred: "length (rbl_pred bl) = length bl"
+  by (induct bl) auto
+
+lemma size_rbl_succ: "length (rbl_succ bl) = length bl"
+  by (induct bl) auto
+
+lemma size_rbl_add:
+  "!!cl. length (rbl_add bl cl) = length bl"
+  by (induct bl) (auto simp: Let_def size_rbl_succ)
+
+lemma size_rbl_mult: 
+  "!!cl. length (rbl_mult bl cl) = length bl"
+  by (induct bl) (auto simp add : Let_def size_rbl_add)
+
+lemmas rbl_sizes [simp] = 
+  size_rbl_pred size_rbl_succ size_rbl_add size_rbl_mult
+
+lemmas rbl_Nils =
+  rbl_pred.Nil rbl_succ.Nil rbl_add.Nil rbl_mult.Nil
+
+lemma rbl_pred: 
+  "!!bin. rbl_pred (rev (bin_to_bl n bin)) = rev (bin_to_bl n (Numeral.pred bin))"
+  apply (induct n, simp)
+  apply (unfold bin_to_bl_def)
+  apply clarsimp
+  apply (case_tac bin rule: bin_exhaust)
+  apply (case_tac b)
+   apply (clarsimp simp: bin_to_bl_aux_alt)+
+  done
+
+lemma rbl_succ: 
+  "!!bin. rbl_succ (rev (bin_to_bl n bin)) = rev (bin_to_bl n (Numeral.succ bin))"
+  apply (induct n, simp)
+  apply (unfold bin_to_bl_def)
+  apply clarsimp
+  apply (case_tac bin rule: bin_exhaust)
+  apply (case_tac b)
+   apply (clarsimp simp: bin_to_bl_aux_alt)+
+  done
+
+lemma rbl_add: 
+  "!!bina binb. rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = 
+    rev (bin_to_bl n (bina + binb))"
+  apply (induct n, simp)
+  apply (unfold bin_to_bl_def)
+  apply clarsimp
+  apply (case_tac bina rule: bin_exhaust)
+  apply (case_tac binb rule: bin_exhaust)
+  apply (case_tac b)
+   apply (case_tac [!] "ba")
+     apply (auto simp: rbl_succ succ_def bin_to_bl_aux_alt Let_def add_ac)
+  done
+
+lemma rbl_add_app2: 
+  "!!blb. length blb >= length bla ==> 
+    rbl_add bla (blb @ blc) = rbl_add bla blb"
+  apply (induct bla, simp)
+  apply clarsimp
+  apply (case_tac blb, clarsimp)
+  apply (clarsimp simp: Let_def)
+  done
+
+lemma rbl_add_take2: 
+  "!!blb. length blb >= length bla ==> 
+    rbl_add bla (take (length bla) blb) = rbl_add bla blb"
+  apply (induct bla, simp)
+  apply clarsimp
+  apply (case_tac blb, clarsimp)
+  apply (clarsimp simp: Let_def)
+  done
+
+lemma rbl_add_long: 
+  "m >= n ==> rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = 
+    rev (bin_to_bl n (bina + binb))"
+  apply (rule box_equals [OF _ rbl_add_take2 rbl_add])
+   apply (rule_tac f = "rbl_add (rev (bin_to_bl n bina))" in arg_cong) 
+   apply (rule rev_swap [THEN iffD1])
+   apply (simp add: rev_take drop_bin2bl)
+  apply simp
+  done
+
+lemma rbl_mult_app2:
+  "!!blb. length blb >= length bla ==> 
+    rbl_mult bla (blb @ blc) = rbl_mult bla blb"
+  apply (induct bla, simp)
+  apply clarsimp
+  apply (case_tac blb, clarsimp)
+  apply (clarsimp simp: Let_def rbl_add_app2)
+  done
+
+lemma rbl_mult_take2: 
+  "length blb >= length bla ==> 
+    rbl_mult bla (take (length bla) blb) = rbl_mult bla blb"
+  apply (rule trans)
+   apply (rule rbl_mult_app2 [symmetric])
+   apply simp
+  apply (rule_tac f = "rbl_mult bla" in arg_cong) 
+  apply (rule append_take_drop_id)
+  done
+    
+lemma rbl_mult_gt1: 
+  "m >= length bl ==> rbl_mult bl (rev (bin_to_bl m binb)) = 
+    rbl_mult bl (rev (bin_to_bl (length bl) binb))"
+  apply (rule trans)
+   apply (rule rbl_mult_take2 [symmetric])
+   apply simp_all
+  apply (rule_tac f = "rbl_mult bl" in arg_cong) 
+  apply (rule rev_swap [THEN iffD1])
+  apply (simp add: rev_take drop_bin2bl)
+  done
+    
+lemma rbl_mult_gt: 
+  "m > n ==> rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = 
+    rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb))"
+  by (auto intro: trans [OF rbl_mult_gt1])
+  
+lemmas rbl_mult_Suc = lessI [THEN rbl_mult_gt]
+
+lemma rbbl_Cons: 
+  "b # rev (bin_to_bl n x) = rev (bin_to_bl (Suc n) (x BIT If b bit.B1 bit.B0))"
+  apply (unfold bin_to_bl_def)
+  apply simp
+  apply (simp add: bin_to_bl_aux_alt)
+  done
+  
+lemma rbl_mult: "!!bina binb. 
+    rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = 
+    rev (bin_to_bl n (bina * binb))"
+  apply (induct n)
+   apply simp
+  apply (unfold bin_to_bl_def)
+  apply clarsimp
+  apply (case_tac bina rule: bin_exhaust)
+  apply (case_tac binb rule: bin_exhaust)
+  apply (case_tac b)
+   apply (case_tac [!] "ba")
+     apply (auto simp: bin_to_bl_aux_alt Let_def)
+     apply (auto simp: rbbl_Cons rbl_mult_Suc rbl_add)
+  done
+
+lemma rbl_add_split: 
+  "P (rbl_add (y # ys) (x # xs)) = 
+    (ALL ws. length ws = length ys --> ws = rbl_add ys xs --> 
+    (y --> ((x --> P (False # rbl_succ ws)) & (~ x -->  P (True # ws)))) & \ 
+    (~ y --> P (x # ws)))"
+  apply (auto simp add: Let_def)
+   apply (case_tac [!] "y")
+     apply auto
+  done
+
+lemma rbl_mult_split: 
+  "P (rbl_mult (y # ys) xs) = 
+    (ALL ws. length ws = Suc (length ys) --> ws = False # rbl_mult ys xs --> 
+    (y --> P (rbl_add ws xs)) & (~ y -->  P ws))"
+  by (clarsimp simp add : Let_def)
+  
+lemma and_len: "xs = ys ==> xs = ys & length xs = length ys"
+  by auto
+
+lemma size_if: "size (if p then xs else ys) = (if p then size xs else size ys)"
+  by auto
+
+lemma tl_if: "tl (if p then xs else ys) = (if p then tl xs else tl ys)"
+  by auto
+
+lemma hd_if: "hd (if p then xs else ys) = (if p then hd xs else hd ys)"
+  by auto
+
+lemma if_Not_x: "(if p then ~ x else x) = (p = (~ x))"
+  by auto
+
+lemma if_x_Not: "(if p then x else ~ x) = (p = x)"
+  by auto
+
+lemma if_same_and: "(If p x y & If p u v) = (if p then x & u else y & v)"
+  by auto
+
+lemma if_same_eq: "(If p x y  = (If p u v)) = (if p then x = (u) else y = (v))"
+  by auto
+
+lemma if_same_eq_not:
+  "(If p x y  = (~ If p u v)) = (if p then x = (~u) else y = (~v))"
+  by auto
+
+(* note - if_Cons can cause blowup in the size, if p is complex,
+  so make a simproc *)
+lemma if_Cons: "(if p then x # xs else y # ys) = If p x y # If p xs ys"
+  by auto
+
+lemma if_single:
+  "(if xc then [xab] else [an]) = [if xc then xab else an]"
+  by auto
+
+lemma if_bool_simps:
+  "If p True y = (p | y) & If p False y = (~p & y) & 
+    If p y True = (p --> y) & If p y False = (p & y)"
+  by auto
+
+lemmas if_simps = if_x_Not if_Not_x if_cancel if_True if_False if_bool_simps
+
+lemmas seqr = eq_reflection [where x = "size ?w"]
+
+lemmas tl_Nil = tl.simps (1)
+lemmas tl_Cons = tl.simps (2)
+
+
+section "Repeated splitting or concatenation"
+
+lemma sclem:
+  "size (concat (map (bin_to_bl n) xs)) = length xs * n"
+  by (induct xs) auto
+
+lemma bin_cat_foldl_lem [rule_format] :
+  "ALL x. foldl (%u. bin_cat u n) x xs = 
+    bin_cat x (size xs * n) (foldl (%u. bin_cat u n) y xs)"
+  apply (induct xs)
+   apply simp
+  apply clarify
+  apply (simp (no_asm))
+  apply (frule asm_rl)
+  apply (drule spec)
+  apply (erule trans)
+  apply (drule_tac x = "bin_cat y n a" in spec) 
+  apply (simp add : bin_cat_assoc_sym min_def)
+  done
+
+lemma bin_rcat_bl:
+  "(bin_rcat n wl) = bl_to_bin (concat (map (bin_to_bl n) wl))"
+  apply (unfold bin_rcat_def)
+  apply (rule sym)
+  apply (induct wl)
+   apply (auto simp add : bl_to_bin_append)
+  apply (simp add : bl_to_bin_aux_alt sclem)
+  apply (simp add : bin_cat_foldl_lem [symmetric])
+  done
+
+lemmas bin_rsplit_aux_simps = bin_rsplit_aux.simps bin_rsplitl_aux.simps
+lemmas rsplit_aux_simps = bin_rsplit_aux_simps
+
+lemmas th_if_simp1 = split_if [where P = "op = ?l",
+  THEN iffD1, THEN conjunct1, THEN mp, standard]
+lemmas th_if_simp2 = split_if [where P = "op = ?l",
+  THEN iffD1, THEN conjunct2, THEN mp, standard]
+
+lemmas rsplit_aux_simp1s = rsplit_aux_simps [THEN th_if_simp1]
+
+lemmas rsplit_aux_simp2ls = rsplit_aux_simps [THEN th_if_simp2]
+(* these safe to [simp add] as require calculating m - n *)
+lemmas bin_rsplit_aux_simp2s [simp] = rsplit_aux_simp2ls [unfolded Let_def]
+lemmas rbscl = bin_rsplit_aux_simp2s (2)
+
+lemmas rsplit_aux_0_simps [simp] = 
+  rsplit_aux_simp1s [OF disjI1] rsplit_aux_simp1s [OF disjI2]
+
+lemma bin_rsplit_aux_append:
+  "bin_rsplit_aux (n, bs @ cs, m, c) = bin_rsplit_aux (n, bs, m, c) @ cs"
+  apply (rule_tac u=n and v=bs and w=m and x=c in bin_rsplit_aux.induct)
+  apply (subst bin_rsplit_aux.simps)
+  apply (subst bin_rsplit_aux.simps)
+  apply (clarsimp split: ls_splits)
+  done
+
+lemma bin_rsplitl_aux_append:
+  "bin_rsplitl_aux (n, bs @ cs, m, c) = bin_rsplitl_aux (n, bs, m, c) @ cs"
+  apply (rule_tac u=n and v=bs and w=m and x=c in bin_rsplitl_aux.induct)
+  apply (subst bin_rsplitl_aux.simps)
+  apply (subst bin_rsplitl_aux.simps)
+  apply (clarsimp split: ls_splits)
+  done
+
+lemmas rsplit_aux_apps [where bs = "[]"] =
+  bin_rsplit_aux_append bin_rsplitl_aux_append
+
+lemmas rsplit_def_auxs = bin_rsplit_def bin_rsplitl_def
+
+lemmas rsplit_aux_alts = rsplit_aux_apps 
+  [unfolded append_Nil rsplit_def_auxs [symmetric]]
+
+lemma bin_split_minus: "0 < n ==> bin_split (Suc (n - 1)) w = bin_split n w"
+  by auto
+
+lemmas bin_split_minus_simp =
+  bin_split.Suc [THEN [2] bin_split_minus [symmetric, THEN trans], standard]
+
+lemma bin_split_pred_simp [simp]: 
+  "(0::nat) < number_of bin \<Longrightarrow>
+  bin_split (number_of bin) w =
+  (let (w1, w2) = bin_split (number_of (Numeral.pred bin)) (bin_rest w)
+   in (w1, w2 BIT bin_last w))" 
+  by (simp only: nobm1 bin_split_minus_simp)
+
+declare bin_split_pred_simp [simp]
+
+lemma bin_rsplit_aux_simp_alt:
+  "bin_rsplit_aux (n, bs, m, c) =
+   (if m = 0 \<or> n = 0 
+   then bs
+   else let (a, b) = bin_split n c in bin_rsplit n (m - n, a) @ b # bs)"
+  apply (rule trans)
+   apply (subst bin_rsplit_aux.simps, rule refl)
+  apply (simp add: rsplit_aux_alts)
+  done
+
+lemmas bin_rsplit_simp_alt = 
+  trans [OF bin_rsplit_def [THEN meta_eq_to_obj_eq]
+            bin_rsplit_aux_simp_alt, standard]
+
+lemmas bthrs = bin_rsplit_simp_alt [THEN [2] trans]
+
+lemma bin_rsplit_size_sign' [rule_format] : 
+  "n > 0 ==> (ALL nw w. rev sw = bin_rsplit n (nw, w) --> 
+    (ALL v: set sw. bintrunc n v = v))"
+  apply (induct sw)
+   apply clarsimp
+  apply clarsimp
+  apply (drule bthrs)
+  apply (simp (no_asm_use) add: Let_def split: ls_splits)
+  apply clarify
+  apply (erule impE, rule exI, erule exI)
+  apply (drule split_bintrunc)
+  apply simp
+  done
+
+lemmas bin_rsplit_size_sign = bin_rsplit_size_sign' [OF asm_rl 
+  rev_rev_ident [THEN trans] set_rev [THEN equalityD2 [THEN subsetD]],
+  standard]
+
+lemma bin_nth_rsplit [rule_format] :
+  "n > 0 ==> m < n ==> (ALL w k nw. rev sw = bin_rsplit n (nw, w) --> 
+       k < size sw --> bin_nth (sw ! k) m = bin_nth w (k * n + m))"
+  apply (induct sw)
+   apply clarsimp
+  apply clarsimp
+  apply (drule bthrs)
+  apply (simp (no_asm_use) add: Let_def split: ls_splits)
+  apply clarify
+  apply (erule allE, erule impE, erule exI)
+  apply (case_tac k)
+   apply clarsimp   
+   prefer 2
+   apply clarsimp
+   apply (erule allE)
+   apply (erule (1) impE)
+   apply (drule bin_nth_split, erule conjE, erule allE,
+          erule trans, simp add : add_ac)+
+  done
+
+lemma bin_rsplit_all:
+  "0 < nw ==> nw <= n ==> bin_rsplit n (nw, w) = [bintrunc n w]"
+  unfolding bin_rsplit_def
+  by (clarsimp dest!: split_bintrunc simp: rsplit_aux_simp2ls split: ls_splits)
+
+lemma bin_rsplit_l [rule_format] :
+  "ALL bin. bin_rsplitl n (m, bin) = bin_rsplit n (m, bintrunc m bin)"
+  apply (rule_tac a = "m" in wf_less_than [THEN wf_induct])
+  apply (simp (no_asm) add : bin_rsplitl_def bin_rsplit_def)
+  apply (rule allI)
+  apply (subst bin_rsplitl_aux.simps)
+  apply (subst bin_rsplit_aux.simps)
+  apply (clarsimp simp: rsplit_aux_alts Let_def split: ls_splits)
+  apply (drule bin_split_trunc)
+  apply (drule sym [THEN trans], assumption)
+  apply fast
+  done
+    
+lemma bin_rsplit_rcat [rule_format] :
+  "n > 0 --> bin_rsplit n (n * size ws, bin_rcat n ws) = map (bintrunc n) ws"
+  apply (unfold bin_rsplit_def bin_rcat_def)
+  apply (rule_tac xs = "ws" in rev_induct)
+   apply clarsimp
+  apply clarsimp
+  apply (clarsimp simp add: bin_split_cat rsplit_aux_alts)
+  done
+
+lemma bin_rsplit_aux_len_le [rule_format] :
+  "ALL ws m. n > 0 --> ws = bin_rsplit_aux (n, bs, nw, w) --> 
+    (length ws <= m) = (nw + length bs * n <= m * n)"
+  apply (rule_tac u=n and v=bs and w=nw and x=w in bin_rsplit_aux.induct)
+  apply (subst bin_rsplit_aux.simps)
+  apply (clarsimp simp: Let_def split: ls_splits)
+  apply (erule lrlem)
+  done
+
+lemma bin_rsplit_len_le: 
+  "n > 0 --> ws = bin_rsplit n (nw, w) --> (length ws <= m) = (nw <= m * n)"
+  unfolding bin_rsplit_def by (clarsimp simp add : bin_rsplit_aux_len_le)
+ 
+lemma bin_rsplit_aux_len [rule_format] :
+  "0 < n --> length (bin_rsplit_aux (n, cs, nw, w)) = 
+    (nw + n - 1) div n + length cs"
+  apply (rule_tac u=n and v=cs and w=nw and x=w in bin_rsplit_aux.induct)
+  apply (subst bin_rsplit_aux.simps)
+  apply (clarsimp simp: Let_def split: ls_splits)
+  apply (erule thin_rl)
+  apply (case_tac "m <= n")
+   prefer 2
+   apply (simp add: div_add_self2 [symmetric])
+  apply (case_tac m, clarsimp)
+  apply (simp add: div_add_self2)
+  done
+
+lemma bin_rsplit_len: 
+  "0 < n ==> length (bin_rsplit n (nw, w)) = (nw + n - 1) div n"
+  unfolding bin_rsplit_def by (clarsimp simp add : bin_rsplit_aux_len)
+
+lemma bin_rsplit_aux_len_indep [rule_format] :
+  "0 < n ==> (ALL v bs. length bs = length cs --> 
+    length (bin_rsplit_aux (n, bs, nw, v)) = 
+    length (bin_rsplit_aux (n, cs, nw, w)))"
+  apply (rule_tac u=n and v=cs and w=nw and x=w in bin_rsplit_aux.induct)
+  apply clarsimp
+  apply (simp (no_asm_simp) add: bin_rsplit_aux_simp_alt Let_def 
+                            split: ls_splits)
+  apply clarify 
+  apply (erule allE)+
+  apply (erule impE)
+   apply (fast elim!: sym)
+  apply (simp (no_asm_use) add: rsplit_aux_alts)
+  apply (erule impE)
+  apply (rule_tac x="ba # bs" in exI)
+  apply auto
+  done
+
+lemma bin_rsplit_len_indep: 
+  "0 < n ==> length (bin_rsplit n (nw, v)) = length (bin_rsplit n (nw, w))"
+  apply (unfold bin_rsplit_def)
+  apply (erule bin_rsplit_aux_len_indep)
+  apply (rule refl)
+  done
+
+end
+