src/HOL/Word/TdThs.thy
changeset 24333 e77ea0ea7f2c
child 24350 4d74f37c6367
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Word/TdThs.thy	Mon Aug 20 04:34:31 2007 +0200
@@ -0,0 +1,220 @@
+(* 
+    ID:         $Id$
+    Author:     Jeremy Dawson and Gerwin Klein, NICTA
+
+  consequences of type definition theorems, 
+  and of extended type definition theorems
+*)
+theory TdThs imports Main begin
+
+lemma
+  tdD1: "type_definition Rep Abs A \<Longrightarrow> \<forall>x. Rep x \<in> A" and
+  tdD2: "type_definition Rep Abs A \<Longrightarrow> \<forall>x. Abs (Rep x) = x" and
+  tdD3: "type_definition Rep Abs A \<Longrightarrow> \<forall>y. y \<in> A \<longrightarrow> Rep (Abs y) = y"
+  by (auto simp: type_definition_def)
+
+lemma td_nat_int: 
+  "type_definition int nat (Collect (op <= 0))"
+  unfolding type_definition_def by auto
+
+context type_definition
+begin
+
+lemmas Rep' [iff] = Rep [simplified]  (* if A is given as Collect .. *)
+
+declare Rep_inverse [simp] Rep_inject [simp]
+
+lemma Abs_eqD: "Abs x = Abs y ==> x \<in> A ==> y \<in> A ==> x = y"
+  by (simp add: Abs_inject)
+   
+lemma Abs_inverse': 
+  "r : A ==> Abs r = a ==> Rep a = r"
+  by (safe elim!: Abs_inverse)
+
+lemma Rep_comp_inverse: 
+  "Rep o f = g ==> Abs o g = f"
+  using Rep_inverse by (auto intro: ext)
+
+lemma Rep_eqD [elim!]: "Rep x = Rep y ==> x = y"
+  by simp
+
+lemma Rep_inverse': "Rep a = r ==> Abs r = a"
+  by (safe intro!: Rep_inverse)
+
+lemma comp_Abs_inverse: 
+  "f o Abs = g ==> g o Rep = f"
+  using Rep_inverse by (auto intro: ext) 
+
+lemma set_Rep: 
+  "A = range Rep"
+proof (rule set_ext)
+  fix x
+  show "(x \<in> A) = (x \<in> range Rep)"
+    by (auto dest: Abs_inverse [of x, symmetric])
+qed  
+
+lemma set_Rep_Abs: "A = range (Rep o Abs)"
+proof (rule set_ext)
+  fix x
+  show "(x \<in> A) = (x \<in> range (Rep o Abs))"
+    by (auto dest: Abs_inverse [of x, symmetric])
+qed  
+
+lemma Abs_inj_on: "inj_on Abs A"
+  unfolding inj_on_def 
+  by (auto dest: Abs_inject [THEN iffD1])
+
+lemma image: "Abs ` A = UNIV"
+  by (auto intro!: image_eqI)
+
+lemmas td_thm = type_definition_axioms
+
+lemma fns1: 
+  "Rep o fa = fr o Rep | fa o Abs = Abs o fr ==> Abs o fr o Rep = fa"
+  by (auto dest: Rep_comp_inverse elim: comp_Abs_inverse simp: o_assoc)
+
+lemmas fns1a = disjI1 [THEN fns1]
+lemmas fns1b = disjI2 [THEN fns1]
+
+lemma fns4:
+  "Rep o fa o Abs = fr ==> 
+   Rep o fa = fr o Rep & fa o Abs = Abs o fr"
+  by (auto intro!: ext)
+
+end
+
+interpretation nat_int: type_definition [int nat "Collect (op <= 0)"]
+  by (rule td_nat_int)
+
+-- "resetting to the default nat induct and cases rules"
+declare Nat.induct [case_names 0 Suc, induct type]
+declare Nat.exhaust [case_names 0 Suc, cases type]
+
+
+section "Extended of type definition predicate"
+
+lemma td_conds:
+  "norm o norm = norm ==> (fr o norm = norm o fr) = 
+    (norm o fr o norm = fr o norm & norm o fr o norm = norm o fr)"
+  apply safe
+    apply (simp_all add: o_assoc [symmetric])
+   apply (simp_all add: o_assoc)
+  done
+
+lemma fn_comm_power:
+  "fa o tr = tr o fr ==> fa ^ n o tr = tr o fr ^ n" 
+  apply (rule ext) 
+  apply (induct n)
+   apply (auto dest: fun_cong)
+  done
+
+lemmas fn_comm_power' =
+  ext [THEN fn_comm_power, THEN fun_cong, unfolded o_def, standard]
+
+
+locale td_ext = type_definition +
+  fixes norm
+  assumes eq_norm: "\<And>x. Rep (Abs x) = norm x"
+begin
+
+lemma Abs_norm [simp]: 
+  "Abs (norm x) = Abs x"
+  using eq_norm [of x] by (auto elim: Rep_inverse')
+
+lemma td_th:
+  "g o Abs = f ==> f (Rep x) = g x"
+  by (drule comp_Abs_inverse [symmetric]) simp
+
+lemma eq_norm': "Rep o Abs = norm"
+  by (auto simp: eq_norm intro!: ext)
+
+lemma norm_Rep [simp]: "norm (Rep x) = Rep x"
+  by (auto simp: eq_norm' intro: td_th)
+
+lemmas td = td_thm
+
+lemma set_iff_norm: "w : A <-> w = norm w"
+  by (auto simp: set_Rep_Abs eq_norm' eq_norm [symmetric])
+
+lemma inverse_norm: 
+  "(Abs n = w) = (Rep w = norm n)"
+  apply (rule iffI)
+   apply (clarsimp simp add: eq_norm)
+  apply (simp add: eq_norm' [symmetric])
+  done
+
+lemma norm_eq_iff: 
+  "(norm x = norm y) = (Abs x = Abs y)"
+  by (simp add: eq_norm' [symmetric])
+
+lemma norm_comps: 
+  "Abs o norm = Abs" 
+  "norm o Rep = Rep" 
+  "norm o norm = norm"
+  by (auto simp: eq_norm' [symmetric] o_def)
+
+lemmas norm_norm [simp] = norm_comps
+
+lemma fns5: 
+  "Rep o fa o Abs = fr ==> 
+  fr o norm = fr & norm o fr = fr"
+  by (fold eq_norm') (auto intro!: ext)
+
+(* following give conditions for converses to td_fns1
+  the condition (norm o fr o norm = fr o norm) says that 
+  fr takes normalised arguments to normalised results,
+  (norm o fr o norm = norm o fr) says that fr 
+  takes norm-equivalent arguments to norm-equivalent results,
+  (fr o norm = fr) says that fr 
+  takes norm-equivalent arguments to the same result, and 
+  (norm o fr = fr) says that fr takes any argument to a normalised result 
+  *)
+lemma fns2: 
+  "Abs o fr o Rep = fa ==> 
+   (norm o fr o norm = fr o norm) = (Rep o fa = fr o Rep)"
+  apply (fold eq_norm')
+  apply safe
+   prefer 2
+   apply (simp add: o_assoc)
+  apply (rule ext)
+  apply (drule_tac x="Rep x" in fun_cong)
+  apply auto
+  done
+
+lemma fns3: 
+  "Abs o fr o Rep = fa ==> 
+   (norm o fr o norm = norm o fr) = (fa o Abs = Abs o fr)"
+  apply (fold eq_norm')
+  apply safe
+   prefer 2
+   apply (simp add: o_assoc [symmetric])
+  apply (rule ext)
+  apply (drule fun_cong)
+  apply simp
+  done
+
+lemma fns: 
+  "fr o norm = norm o fr ==> 
+    (fa o Abs = Abs o fr) = (Rep o fa = fr o Rep)"
+  apply safe
+   apply (frule fns1b)
+   prefer 2 
+   apply (frule fns1a) 
+   apply (rule fns3 [THEN iffD1])
+     prefer 3
+     apply (rule fns2 [THEN iffD1])
+       apply (simp_all add: o_assoc [symmetric])
+   apply (simp_all add: o_assoc)
+  done
+
+lemma range_norm:
+  "range (Rep o Abs) = A"
+  by (simp add: set_Rep_Abs)
+
+end
+
+lemmas td_ext_def' =
+  td_ext_def [unfolded type_definition_def td_ext_axioms_def]
+
+end
+