src/HOL/Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML
changeset 39014 e820beaf7d8c
parent 38981 7cf8beb31e0f
parent 39013 c79e6d536267
child 39016 caad9d509bc4
child 39035 094848cf7ef3
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML	Thu Sep 02 08:40:25 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1038 +0,0 @@
-(*  Title:      HOL/Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML
-    Author:     Lawrence C. Paulson, Cambridge University Computer Laboratory
-    Author:     Claire Quigley, Cambridge University Computer Laboratory
-    Author:     Jasmin Blanchette, TU Muenchen
-
-Transfer of proofs from external provers.
-*)
-
-signature SLEDGEHAMMER_PROOF_RECONSTRUCT =
-sig
-  type locality = Sledgehammer_Fact_Filter.locality
-  type minimize_command = string list -> string
-  type metis_params =
-    bool * minimize_command * string * (string * locality) list vector * thm
-    * int
-  type isar_params =
-    string Symtab.table * bool * int * Proof.context * int list list
-  type text_result = string * (string * locality) list
-
-  val metis_proof_text : metis_params -> text_result
-  val isar_proof_text : isar_params -> metis_params -> text_result
-  val proof_text : bool -> isar_params -> metis_params -> text_result
-end;
-
-structure Sledgehammer_Proof_Reconstruct : SLEDGEHAMMER_PROOF_RECONSTRUCT =
-struct
-
-open ATP_Problem
-open Metis_Clauses
-open Sledgehammer_Util
-open Sledgehammer_Fact_Filter
-open Sledgehammer_Translate
-
-type minimize_command = string list -> string
-type metis_params =
-  bool * minimize_command * string * (string * locality) list vector * thm * int
-type isar_params =
-  string Symtab.table * bool * int * Proof.context * int list list
-type text_result = string * (string * locality) list
-
-(* Simple simplifications to ensure that sort annotations don't leave a trail of
-   spurious "True"s. *)
-fun s_not @{const False} = @{const True}
-  | s_not @{const True} = @{const False}
-  | s_not (@{const Not} $ t) = t
-  | s_not t = @{const Not} $ t
-fun s_conj (@{const True}, t2) = t2
-  | s_conj (t1, @{const True}) = t1
-  | s_conj p = HOLogic.mk_conj p
-fun s_disj (@{const False}, t2) = t2
-  | s_disj (t1, @{const False}) = t1
-  | s_disj p = HOLogic.mk_disj p
-fun s_imp (@{const True}, t2) = t2
-  | s_imp (t1, @{const False}) = s_not t1
-  | s_imp p = HOLogic.mk_imp p
-fun s_iff (@{const True}, t2) = t2
-  | s_iff (t1, @{const True}) = t1
-  | s_iff (t1, t2) = HOLogic.eq_const HOLogic.boolT $ t1 $ t2
-
-fun mk_anot (AConn (ANot, [phi])) = phi
-  | mk_anot phi = AConn (ANot, [phi])
-fun mk_aconn c (phi1, phi2) = AConn (c, [phi1, phi2])
-
-fun index_in_shape x = find_index (exists (curry (op =) x))
-fun is_axiom_number axiom_names num =
-  num > 0 andalso num <= Vector.length axiom_names andalso
-  not (null (Vector.sub (axiom_names, num - 1)))
-fun is_conjecture_number conjecture_shape num =
-  index_in_shape num conjecture_shape >= 0
-
-fun negate_term (Const (@{const_name All}, T) $ Abs (s, T', t')) =
-    Const (@{const_name Ex}, T) $ Abs (s, T', negate_term t')
-  | negate_term (Const (@{const_name Ex}, T) $ Abs (s, T', t')) =
-    Const (@{const_name All}, T) $ Abs (s, T', negate_term t')
-  | negate_term (@{const HOL.implies} $ t1 $ t2) =
-    @{const HOL.conj} $ t1 $ negate_term t2
-  | negate_term (@{const HOL.conj} $ t1 $ t2) =
-    @{const HOL.disj} $ negate_term t1 $ negate_term t2
-  | negate_term (@{const HOL.disj} $ t1 $ t2) =
-    @{const HOL.conj} $ negate_term t1 $ negate_term t2
-  | negate_term (@{const Not} $ t) = t
-  | negate_term t = @{const Not} $ t
-
-datatype ('a, 'b, 'c, 'd, 'e) raw_step =
-  Definition of 'a * 'b * 'c |
-  Inference of 'a * 'd * 'e list
-
-fun raw_step_number (Definition (num, _, _)) = num
-  | raw_step_number (Inference (num, _, _)) = num
-
-(**** PARSING OF TSTP FORMAT ****)
-
-(*Strings enclosed in single quotes, e.g. filenames*)
-val scan_quoted = $$ "'" |-- Scan.repeat (~$$ "'") --| $$ "'" >> implode;
-
-val scan_dollar_name =
-  Scan.repeat ($$ "$") -- Symbol.scan_id >> (fn (ss, s) => implode ss ^ s)
-
-fun repair_name _ "$true" = "c_True"
-  | repair_name _ "$false" = "c_False"
-  | repair_name _ "$$e" = "c_equal" (* seen in Vampire proofs *)
-  | repair_name _ "equal" = "c_equal" (* needed by SPASS? *)
-  | repair_name pool s =
-    case Symtab.lookup pool s of
-      SOME s' => s'
-    | NONE =>
-      if String.isPrefix "sQ" s andalso String.isSuffix "_eqProxy" s then
-        "c_equal" (* seen in Vampire proofs *)
-      else
-        s
-(* Generalized first-order terms, which include file names, numbers, etc. *)
-val parse_potential_integer =
-  (scan_dollar_name || scan_quoted) >> K NONE
-  || scan_integer >> SOME
-fun parse_annotation x =
-  ((parse_potential_integer ::: Scan.repeat ($$ " " |-- parse_potential_integer)
-    >> map_filter I) -- Scan.optional parse_annotation []
-     >> uncurry (union (op =))
-   || $$ "(" |-- parse_annotations --| $$ ")"
-   || $$ "[" |-- parse_annotations --| $$ "]") x
-and parse_annotations x =
-  (Scan.optional (parse_annotation
-                  ::: Scan.repeat ($$ "," |-- parse_annotation)) []
-   >> (fn numss => fold (union (op =)) numss [])) x
-
-(* Vampire proof lines sometimes contain needless information such as "(0:3)",
-   which can be hard to disambiguate from function application in an LL(1)
-   parser. As a workaround, we extend the TPTP term syntax with such detritus
-   and ignore it. *)
-fun parse_vampire_detritus x =
-  (scan_integer |-- $$ ":" --| scan_integer >> K []) x
-
-fun parse_term pool x =
-  ((scan_dollar_name >> repair_name pool)
-    -- Scan.optional ($$ "(" |-- (parse_vampire_detritus || parse_terms pool)
-                      --| $$ ")") []
-    --| Scan.optional ($$ "(" |-- parse_vampire_detritus --| $$ ")") []
-   >> ATerm) x
-and parse_terms pool x =
-  (parse_term pool ::: Scan.repeat ($$ "," |-- parse_term pool)) x
-
-fun parse_atom pool =
-  parse_term pool -- Scan.option (Scan.option ($$ "!") --| $$ "="
-                                  -- parse_term pool)
-  >> (fn (u1, NONE) => AAtom u1
-       | (u1, SOME (NONE, u2)) => AAtom (ATerm ("c_equal", [u1, u2]))
-       | (u1, SOME (SOME _, u2)) =>
-         mk_anot (AAtom (ATerm ("c_equal", [u1, u2]))))
-
-fun fo_term_head (ATerm (s, _)) = s
-
-(* TPTP formulas are fully parenthesized, so we don't need to worry about
-   operator precedence. *)
-fun parse_formula pool x =
-  (($$ "(" |-- parse_formula pool --| $$ ")"
-    || ($$ "!" >> K AForall || $$ "?" >> K AExists)
-       --| $$ "[" -- parse_terms pool --| $$ "]" --| $$ ":"
-       -- parse_formula pool
-       >> (fn ((q, ts), phi) => AQuant (q, map fo_term_head ts, phi))
-    || $$ "~" |-- parse_formula pool >> mk_anot
-    || parse_atom pool)
-   -- Scan.option ((Scan.this_string "=>" >> K AImplies
-                    || Scan.this_string "<=>" >> K AIff
-                    || Scan.this_string "<~>" >> K ANotIff
-                    || Scan.this_string "<=" >> K AIf
-                    || $$ "|" >> K AOr || $$ "&" >> K AAnd)
-                   -- parse_formula pool)
-   >> (fn (phi1, NONE) => phi1
-        | (phi1, SOME (c, phi2)) => mk_aconn c (phi1, phi2))) x
-
-val parse_tstp_extra_arguments =
-  Scan.optional ($$ "," |-- parse_annotation
-                 --| Scan.option ($$ "," |-- parse_annotations)) []
-
-(* Syntax: (fof|cnf)\(<num>, <formula_role>, <formula> <extra_arguments>\).
-   The <num> could be an identifier, but we assume integers. *)
- fun parse_tstp_line pool =
-   ((Scan.this_string "fof" || Scan.this_string "cnf") -- $$ "(")
-     |-- scan_integer --| $$ "," -- Symbol.scan_id --| $$ ","
-     -- parse_formula pool -- parse_tstp_extra_arguments --| $$ ")" --| $$ "."
-    >> (fn (((num, role), phi), deps) =>
-           case role of
-             "definition" =>
-             (case phi of
-                AConn (AIff, [phi1 as AAtom _, phi2]) =>
-                Definition (num, phi1, phi2)
-              | AAtom (ATerm ("c_equal", _)) =>
-                Inference (num, phi, deps) (* Vampire's equality proxy axiom *)
-              | _ => raise Fail "malformed definition")
-           | _ => Inference (num, phi, deps))
-
-(**** PARSING OF VAMPIRE OUTPUT ****)
-
-(* Syntax: <num>. <formula> <annotation> *)
-fun parse_vampire_line pool =
-  scan_integer --| $$ "." -- parse_formula pool -- parse_annotation
-  >> (fn ((num, phi), deps) => Inference (num, phi, deps))
-
-(**** PARSING OF SPASS OUTPUT ****)
-
-(* SPASS returns clause references of the form "x.y". We ignore "y", whose role
-   is not clear anyway. *)
-val parse_dot_name = scan_integer --| $$ "." --| scan_integer
-
-val parse_spass_annotations =
-  Scan.optional ($$ ":" |-- Scan.repeat (parse_dot_name
-                                         --| Scan.option ($$ ","))) []
-
-(* It is not clear why some literals are followed by sequences of stars and/or
-   pluses. We ignore them. *)
-fun parse_decorated_atom pool =
-  parse_atom pool --| Scan.repeat ($$ "*" || $$ "+" || $$ " ")
-
-fun mk_horn ([], []) = AAtom (ATerm ("c_False", []))
-  | mk_horn ([], pos_lits) = foldr1 (mk_aconn AOr) pos_lits
-  | mk_horn (neg_lits, []) = mk_anot (foldr1 (mk_aconn AAnd) neg_lits)
-  | mk_horn (neg_lits, pos_lits) =
-    mk_aconn AImplies (foldr1 (mk_aconn AAnd) neg_lits,
-                       foldr1 (mk_aconn AOr) pos_lits)
-
-fun parse_horn_clause pool =
-  Scan.repeat (parse_decorated_atom pool) --| $$ "|" --| $$ "|"
-    -- Scan.repeat (parse_decorated_atom pool) --| $$ "-" --| $$ ">"
-    -- Scan.repeat (parse_decorated_atom pool)
-  >> (mk_horn o apfst (op @))
-
-(* Syntax: <num>[0:<inference><annotations>]
-   <atoms> || <atoms> -> <atoms>. *)
-fun parse_spass_line pool =
-  scan_integer --| $$ "[" --| $$ "0" --| $$ ":" --| Symbol.scan_id
-    -- parse_spass_annotations --| $$ "]" -- parse_horn_clause pool --| $$ "."
-  >> (fn ((num, deps), u) => Inference (num, u, deps))
-
-fun parse_line pool =
-  parse_tstp_line pool || parse_vampire_line pool || parse_spass_line pool
-fun parse_lines pool = Scan.repeat1 (parse_line pool)
-fun parse_proof pool =
-  fst o Scan.finite Symbol.stopper
-            (Scan.error (!! (fn _ => raise Fail "unrecognized ATP output")
-                            (parse_lines pool)))
-  o explode o strip_spaces_except_between_ident_chars
-
-(**** INTERPRETATION OF TSTP SYNTAX TREES ****)
-
-exception FO_TERM of string fo_term list
-exception FORMULA of (string, string fo_term) formula list
-exception SAME of unit
-
-(* Type variables are given the basic sort "HOL.type". Some will later be
-   constrained by information from type literals, or by type inference. *)
-fun type_from_fo_term tfrees (u as ATerm (a, us)) =
-  let val Ts = map (type_from_fo_term tfrees) us in
-    case strip_prefix_and_unascii type_const_prefix a of
-      SOME b => Type (invert_const b, Ts)
-    | NONE =>
-      if not (null us) then
-        raise FO_TERM [u]  (* only "tconst"s have type arguments *)
-      else case strip_prefix_and_unascii tfree_prefix a of
-        SOME b =>
-        let val s = "'" ^ b in
-          TFree (s, AList.lookup (op =) tfrees s |> the_default HOLogic.typeS)
-        end
-      | NONE =>
-        case strip_prefix_and_unascii tvar_prefix a of
-          SOME b => TVar (("'" ^ b, 0), HOLogic.typeS)
-        | NONE =>
-          (* Variable from the ATP, say "X1" *)
-          Type_Infer.param 0 (a, HOLogic.typeS)
-  end
-
-(* Type class literal applied to a type. Returns triple of polarity, class,
-   type. *)
-fun type_constraint_from_term pos tfrees (u as ATerm (a, us)) =
-  case (strip_prefix_and_unascii class_prefix a,
-        map (type_from_fo_term tfrees) us) of
-    (SOME b, [T]) => (pos, b, T)
-  | _ => raise FO_TERM [u]
-
-(** Accumulate type constraints in a formula: negative type literals **)
-fun add_var (key, z)  = Vartab.map_default (key, []) (cons z)
-fun add_type_constraint (false, cl, TFree (a ,_)) = add_var ((a, ~1), cl)
-  | add_type_constraint (false, cl, TVar (ix, _)) = add_var (ix, cl)
-  | add_type_constraint _ = I
-
-fun repair_atp_variable_name f s =
-  let
-    fun subscript_name s n = s ^ nat_subscript n
-    val s = String.map f s
-  in
-    case space_explode "_" s of
-      [_] => (case take_suffix Char.isDigit (String.explode s) of
-                (cs1 as _ :: _, cs2 as _ :: _) =>
-                subscript_name (String.implode cs1)
-                               (the (Int.fromString (String.implode cs2)))
-              | (_, _) => s)
-    | [s1, s2] => (case Int.fromString s2 of
-                     SOME n => subscript_name s1 n
-                   | NONE => s)
-    | _ => s
-  end
-
-(* First-order translation. No types are known for variables. "HOLogic.typeT"
-   should allow them to be inferred. *)
-fun raw_term_from_pred thy full_types tfrees =
-  let
-    fun aux opt_T extra_us u =
-      case u of
-        ATerm ("hBOOL", [u1]) => aux (SOME @{typ bool}) [] u1
-      | ATerm ("hAPP", [u1, u2]) => aux opt_T (u2 :: extra_us) u1
-      | ATerm (a, us) =>
-        if a = type_wrapper_name then
-          case us of
-            [typ_u, term_u] =>
-            aux (SOME (type_from_fo_term tfrees typ_u)) extra_us term_u
-          | _ => raise FO_TERM us
-        else case strip_prefix_and_unascii const_prefix a of
-          SOME "equal" =>
-          list_comb (Const (@{const_name HOL.eq}, HOLogic.typeT),
-                     map (aux NONE []) us)
-        | SOME b =>
-          let
-            val c = invert_const b
-            val num_type_args = num_type_args thy c
-            val (type_us, term_us) =
-              chop (if full_types then 0 else num_type_args) us
-            (* Extra args from "hAPP" come after any arguments given directly to
-               the constant. *)
-            val term_ts = map (aux NONE []) term_us
-            val extra_ts = map (aux NONE []) extra_us
-            val t =
-              Const (c, if full_types then
-                          case opt_T of
-                            SOME T => map fastype_of term_ts ---> T
-                          | NONE =>
-                            if num_type_args = 0 then
-                              Sign.const_instance thy (c, [])
-                            else
-                              raise Fail ("no type information for " ^ quote c)
-                        else
-                          Sign.const_instance thy (c,
-                              map (type_from_fo_term tfrees) type_us))
-          in list_comb (t, term_ts @ extra_ts) end
-        | NONE => (* a free or schematic variable *)
-          let
-            val ts = map (aux NONE []) (us @ extra_us)
-            val T = map fastype_of ts ---> HOLogic.typeT
-            val t =
-              case strip_prefix_and_unascii fixed_var_prefix a of
-                SOME b => Free (b, T)
-              | NONE =>
-                case strip_prefix_and_unascii schematic_var_prefix a of
-                  SOME b => Var ((b, 0), T)
-                | NONE =>
-                  if is_tptp_variable a then
-                    Var ((repair_atp_variable_name Char.toLower a, 0), T)
-                  else
-                    (* Skolem constants? *)
-                    Var ((repair_atp_variable_name Char.toUpper a, 0), T)
-          in list_comb (t, ts) end
-  in aux (SOME HOLogic.boolT) [] end
-
-fun term_from_pred thy full_types tfrees pos (u as ATerm (s, _)) =
-  if String.isPrefix class_prefix s then
-    add_type_constraint (type_constraint_from_term pos tfrees u)
-    #> pair @{const True}
-  else
-    pair (raw_term_from_pred thy full_types tfrees u)
-
-val combinator_table =
-  [(@{const_name COMBI}, @{thm COMBI_def_raw}),
-   (@{const_name COMBK}, @{thm COMBK_def_raw}),
-   (@{const_name COMBB}, @{thm COMBB_def_raw}),
-   (@{const_name COMBC}, @{thm COMBC_def_raw}),
-   (@{const_name COMBS}, @{thm COMBS_def_raw})]
-
-fun uncombine_term (t1 $ t2) = betapply (pairself uncombine_term (t1, t2))
-  | uncombine_term (Abs (s, T, t')) = Abs (s, T, uncombine_term t')
-  | uncombine_term (t as Const (x as (s, _))) =
-    (case AList.lookup (op =) combinator_table s of
-       SOME thm => thm |> prop_of |> specialize_type @{theory} x |> Logic.dest_equals |> snd
-     | NONE => t)
-  | uncombine_term t = t
-
-(* Update schematic type variables with detected sort constraints. It's not
-   totally clear when this code is necessary. *)
-fun repair_tvar_sorts (t, tvar_tab) =
-  let
-    fun do_type (Type (a, Ts)) = Type (a, map do_type Ts)
-      | do_type (TVar (xi, s)) =
-        TVar (xi, the_default s (Vartab.lookup tvar_tab xi))
-      | do_type (TFree z) = TFree z
-    fun do_term (Const (a, T)) = Const (a, do_type T)
-      | do_term (Free (a, T)) = Free (a, do_type T)
-      | do_term (Var (xi, T)) = Var (xi, do_type T)
-      | do_term (t as Bound _) = t
-      | do_term (Abs (a, T, t)) = Abs (a, do_type T, do_term t)
-      | do_term (t1 $ t2) = do_term t1 $ do_term t2
-  in t |> not (Vartab.is_empty tvar_tab) ? do_term end
-
-fun quantify_over_free quant_s free_s body_t =
-  case Term.add_frees body_t [] |> filter (curry (op =) free_s o fst) of
-    [] => body_t
-  | frees as (_, free_T) :: _ =>
-    Abs (free_s, free_T, fold (curry abstract_over) (map Free frees) body_t)
-
-(* Interpret an ATP formula as a HOL term, extracting sort constraints as they
-   appear in the formula. *)
-fun prop_from_formula thy full_types tfrees phi =
-  let
-    fun do_formula pos phi =
-      case phi of
-        AQuant (_, [], phi) => do_formula pos phi
-      | AQuant (q, x :: xs, phi') =>
-        do_formula pos (AQuant (q, xs, phi'))
-        #>> quantify_over_free (case q of
-                                  AForall => @{const_name All}
-                                | AExists => @{const_name Ex})
-                               (repair_atp_variable_name Char.toLower x)
-      | AConn (ANot, [phi']) => do_formula (not pos) phi' #>> s_not
-      | AConn (c, [phi1, phi2]) =>
-        do_formula (pos |> c = AImplies ? not) phi1
-        ##>> do_formula pos phi2
-        #>> (case c of
-               AAnd => s_conj
-             | AOr => s_disj
-             | AImplies => s_imp
-             | AIf => s_imp o swap
-             | AIff => s_iff
-             | ANotIff => s_not o s_iff)
-      | AAtom tm => term_from_pred thy full_types tfrees pos tm
-      | _ => raise FORMULA [phi]
-  in repair_tvar_sorts (do_formula true phi Vartab.empty) end
-
-fun check_formula ctxt =
-  Type_Infer.constrain HOLogic.boolT
-  #> Syntax.check_term (ProofContext.set_mode ProofContext.mode_schematic ctxt)
-
-
-(**** Translation of TSTP files to Isar Proofs ****)
-
-fun unvarify_term (Var ((s, 0), T)) = Free (s, T)
-  | unvarify_term t = raise TERM ("unvarify_term: non-Var", [t])
-
-fun decode_line full_types tfrees (Definition (num, phi1, phi2)) ctxt =
-    let
-      val thy = ProofContext.theory_of ctxt
-      val t1 = prop_from_formula thy full_types tfrees phi1
-      val vars = snd (strip_comb t1)
-      val frees = map unvarify_term vars
-      val unvarify_args = subst_atomic (vars ~~ frees)
-      val t2 = prop_from_formula thy full_types tfrees phi2
-      val (t1, t2) =
-        HOLogic.eq_const HOLogic.typeT $ t1 $ t2
-        |> unvarify_args |> uncombine_term |> check_formula ctxt
-        |> HOLogic.dest_eq
-    in
-      (Definition (num, t1, t2),
-       fold Variable.declare_term (maps OldTerm.term_frees [t1, t2]) ctxt)
-    end
-  | decode_line full_types tfrees (Inference (num, u, deps)) ctxt =
-    let
-      val thy = ProofContext.theory_of ctxt
-      val t = u |> prop_from_formula thy full_types tfrees
-                |> uncombine_term |> check_formula ctxt
-    in
-      (Inference (num, t, deps),
-       fold Variable.declare_term (OldTerm.term_frees t) ctxt)
-    end
-fun decode_lines ctxt full_types tfrees lines =
-  fst (fold_map (decode_line full_types tfrees) lines ctxt)
-
-fun is_same_inference _ (Definition _) = false
-  | is_same_inference t (Inference (_, t', _)) = t aconv t'
-
-(* No "real" literals means only type information (tfree_tcs, clsrel, or
-   clsarity). *)
-val is_only_type_information = curry (op aconv) HOLogic.true_const
-
-fun replace_one_dep (old, new) dep = if dep = old then new else [dep]
-fun replace_deps_in_line _ (line as Definition _) = line
-  | replace_deps_in_line p (Inference (num, t, deps)) =
-    Inference (num, t, fold (union (op =) o replace_one_dep p) deps [])
-
-(* Discard axioms; consolidate adjacent lines that prove the same formula, since
-   they differ only in type information.*)
-fun add_line _ _ (line as Definition _) lines = line :: lines
-  | add_line conjecture_shape axiom_names (Inference (num, t, [])) lines =
-    (* No dependencies: axiom, conjecture, or (for Vampire) internal axioms or
-       definitions. *)
-    if is_axiom_number axiom_names num then
-      (* Axioms are not proof lines. *)
-      if is_only_type_information t then
-        map (replace_deps_in_line (num, [])) lines
-      (* Is there a repetition? If so, replace later line by earlier one. *)
-      else case take_prefix (not o is_same_inference t) lines of
-        (_, []) => lines (*no repetition of proof line*)
-      | (pre, Inference (num', _, _) :: post) =>
-        pre @ map (replace_deps_in_line (num', [num])) post
-    else if is_conjecture_number conjecture_shape num then
-      Inference (num, negate_term t, []) :: lines
-    else
-      map (replace_deps_in_line (num, [])) lines
-  | add_line _ _ (Inference (num, t, deps)) lines =
-    (* Type information will be deleted later; skip repetition test. *)
-    if is_only_type_information t then
-      Inference (num, t, deps) :: lines
-    (* Is there a repetition? If so, replace later line by earlier one. *)
-    else case take_prefix (not o is_same_inference t) lines of
-      (* FIXME: Doesn't this code risk conflating proofs involving different
-         types? *)
-       (_, []) => Inference (num, t, deps) :: lines
-     | (pre, Inference (num', t', _) :: post) =>
-       Inference (num, t', deps) ::
-       pre @ map (replace_deps_in_line (num', [num])) post
-
-(* Recursively delete empty lines (type information) from the proof. *)
-fun add_nontrivial_line (Inference (num, t, [])) lines =
-    if is_only_type_information t then delete_dep num lines
-    else Inference (num, t, []) :: lines
-  | add_nontrivial_line line lines = line :: lines
-and delete_dep num lines =
-  fold_rev add_nontrivial_line (map (replace_deps_in_line (num, [])) lines) []
-
-(* ATPs sometimes reuse free variable names in the strangest ways. Removing
-   offending lines often does the trick. *)
-fun is_bad_free frees (Free x) = not (member (op =) frees x)
-  | is_bad_free _ _ = false
-
-(* Vampire is keen on producing these. *)
-fun is_trivial_formula (@{const Not} $ (Const (@{const_name HOL.eq}, _)
-                                        $ t1 $ t2)) = (t1 aconv t2)
-  | is_trivial_formula _ = false
-
-fun add_desired_line _ _ _ _ (line as Definition (num, _, _)) (j, lines) =
-    (j, line :: map (replace_deps_in_line (num, [])) lines)
-  | add_desired_line isar_shrink_factor conjecture_shape axiom_names frees
-                     (Inference (num, t, deps)) (j, lines) =
-    (j + 1,
-     if is_axiom_number axiom_names num orelse
-        is_conjecture_number conjecture_shape num orelse
-        (not (is_only_type_information t) andalso
-         null (Term.add_tvars t []) andalso
-         not (exists_subterm (is_bad_free frees) t) andalso
-         not (is_trivial_formula t) andalso
-         (null lines orelse (* last line must be kept *)
-          (length deps >= 2 andalso j mod isar_shrink_factor = 0))) then
-       Inference (num, t, deps) :: lines  (* keep line *)
-     else
-       map (replace_deps_in_line (num, deps)) lines)  (* drop line *)
-
-(** EXTRACTING LEMMAS **)
-
-(* Like "split_line", but ignores "\n" that follow a comma (as in SNARK's
-   output). *)
-val split_proof_lines =
-  let
-    fun aux [] [] = []
-      | aux line [] = [implode (rev line)]
-      | aux line ("," :: "\n" :: rest) = aux ("," :: line) rest
-      | aux line ("\n" :: rest) = aux line [] @ aux [] rest
-      | aux line (s :: rest) = aux (s :: line) rest
-  in aux [] o explode end
-
-(* A list consisting of the first number in each line is returned. For TSTP,
-   interesting lines have the form "fof(108, axiom, ...)", where the number
-   (108) is extracted. For SPASS, lines have the form "108[0:Inp] ...", where
-   the first number (108) is extracted. For Vampire, we look for
-   "108. ... [input]". *)
-fun used_facts_in_atp_proof axiom_names atp_proof =
-  let
-    fun axiom_names_at_index num =
-      let val j = Int.fromString num |> the_default ~1 in
-        if is_axiom_number axiom_names j then Vector.sub (axiom_names, j - 1)
-        else []
-      end
-    val tokens_of =
-      String.tokens (fn c => not (Char.isAlphaNum c) andalso c <> #"_")
-    fun do_line (tag :: num :: "axiom" :: (rest as _ :: _)) =
-        if tag = "cnf" orelse tag = "fof" then
-          (case strip_prefix_and_unascii axiom_prefix (List.last rest) of
-             SOME name =>
-             if member (op =) rest "file" then
-               ([(name, name |> find_first_in_list_vector axiom_names |> the)]
-                handle Option.Option =>
-                       error ("No such fact: " ^ quote name ^ "."))
-             else
-               axiom_names_at_index num
-           | NONE => axiom_names_at_index num)
-        else
-          []
-      | do_line (num :: "0" :: "Inp" :: _) = axiom_names_at_index num
-      | do_line (num :: rest) =
-        (case List.last rest of "input" => axiom_names_at_index num | _ => [])
-      | do_line _ = []
-  in atp_proof |> split_proof_lines |> maps (do_line o tokens_of) end
-
-val indent_size = 2
-val no_label = ("", ~1)
-
-val raw_prefix = "X"
-val assum_prefix = "A"
-val fact_prefix = "F"
-
-fun string_for_label (s, num) = s ^ string_of_int num
-
-fun metis_using [] = ""
-  | metis_using ls =
-    "using " ^ space_implode " " (map string_for_label ls) ^ " "
-fun metis_apply _ 1 = "by "
-  | metis_apply 1 _ = "apply "
-  | metis_apply i _ = "prefer " ^ string_of_int i ^ " apply "
-fun metis_name full_types = if full_types then "metisFT" else "metis"
-fun metis_call full_types [] = metis_name full_types
-  | metis_call full_types ss =
-    "(" ^ metis_name full_types ^ " " ^ space_implode " " ss ^ ")"
-fun metis_command full_types i n (ls, ss) =
-  metis_using ls ^ metis_apply i n ^ metis_call full_types ss
-fun metis_line full_types i n ss =
-  "Try this command: " ^
-  Markup.markup Markup.sendback (metis_command full_types i n ([], ss)) ^ "."
-fun minimize_line _ [] = ""
-  | minimize_line minimize_command ss =
-    case minimize_command ss of
-      "" => ""
-    | command =>
-      "\nTo minimize the number of lemmas, try this: " ^
-      Markup.markup Markup.sendback command ^ "."
-
-fun used_facts axiom_names =
-  used_facts_in_atp_proof axiom_names
-  #> List.partition (curry (op =) Chained o snd)
-  #> pairself (sort_distinct (string_ord o pairself fst))
-
-fun metis_proof_text (full_types, minimize_command, atp_proof, axiom_names,
-                      goal, i) =
-  let
-    val (chained_lemmas, other_lemmas) = used_facts axiom_names atp_proof
-    val n = Logic.count_prems (prop_of goal)
-  in
-    (metis_line full_types i n (map fst other_lemmas) ^
-     minimize_line minimize_command (map fst (other_lemmas @ chained_lemmas)),
-     other_lemmas @ chained_lemmas)
-  end
-
-(** Isar proof construction and manipulation **)
-
-fun merge_fact_sets (ls1, ss1) (ls2, ss2) =
-  (union (op =) ls1 ls2, union (op =) ss1 ss2)
-
-type label = string * int
-type facts = label list * string list
-
-datatype qualifier = Show | Then | Moreover | Ultimately
-
-datatype step =
-  Fix of (string * typ) list |
-  Let of term * term |
-  Assume of label * term |
-  Have of qualifier list * label * term * byline
-and byline =
-  ByMetis of facts |
-  CaseSplit of step list list * facts
-
-fun smart_case_split [] facts = ByMetis facts
-  | smart_case_split proofs facts = CaseSplit (proofs, facts)
-
-fun add_fact_from_dep axiom_names num =
-  if is_axiom_number axiom_names num then
-    apsnd (union (op =) (map fst (Vector.sub (axiom_names, num - 1))))
-  else
-    apfst (insert (op =) (raw_prefix, num))
-
-fun forall_of v t = HOLogic.all_const (fastype_of v) $ lambda v t
-fun forall_vars t = fold_rev forall_of (map Var (Term.add_vars t [])) t
-
-fun step_for_line _ _ (Definition (_, t1, t2)) = Let (t1, t2)
-  | step_for_line _ _ (Inference (num, t, [])) = Assume ((raw_prefix, num), t)
-  | step_for_line axiom_names j (Inference (num, t, deps)) =
-    Have (if j = 1 then [Show] else [], (raw_prefix, num),
-          forall_vars t,
-          ByMetis (fold (add_fact_from_dep axiom_names) deps ([], [])))
-
-fun proof_from_atp_proof pool ctxt full_types tfrees isar_shrink_factor
-                         atp_proof conjecture_shape axiom_names params frees =
-  let
-    val lines =
-      atp_proof ^ "$" (* the $ sign acts as a sentinel (FIXME: needed?) *)
-      |> parse_proof pool
-      |> sort (int_ord o pairself raw_step_number)
-      |> decode_lines ctxt full_types tfrees
-      |> rpair [] |-> fold_rev (add_line conjecture_shape axiom_names)
-      |> rpair [] |-> fold_rev add_nontrivial_line
-      |> rpair (0, []) |-> fold_rev (add_desired_line isar_shrink_factor
-                                             conjecture_shape axiom_names frees)
-      |> snd
-  in
-    (if null params then [] else [Fix params]) @
-    map2 (step_for_line axiom_names) (length lines downto 1) lines
-  end
-
-(* When redirecting proofs, we keep information about the labels seen so far in
-   the "backpatches" data structure. The first component indicates which facts
-   should be associated with forthcoming proof steps. The second component is a
-   pair ("assum_ls", "drop_ls"), where "assum_ls" are the labels that should
-   become assumptions and "drop_ls" are the labels that should be dropped in a
-   case split. *)
-type backpatches = (label * facts) list * (label list * label list)
-
-fun used_labels_of_step (Have (_, _, _, by)) =
-    (case by of
-       ByMetis (ls, _) => ls
-     | CaseSplit (proofs, (ls, _)) =>
-       fold (union (op =) o used_labels_of) proofs ls)
-  | used_labels_of_step _ = []
-and used_labels_of proof = fold (union (op =) o used_labels_of_step) proof []
-
-fun new_labels_of_step (Fix _) = []
-  | new_labels_of_step (Let _) = []
-  | new_labels_of_step (Assume (l, _)) = [l]
-  | new_labels_of_step (Have (_, l, _, _)) = [l]
-val new_labels_of = maps new_labels_of_step
-
-val join_proofs =
-  let
-    fun aux _ [] = NONE
-      | aux proof_tail (proofs as (proof1 :: _)) =
-        if exists null proofs then
-          NONE
-        else if forall (curry (op =) (hd proof1) o hd) (tl proofs) then
-          aux (hd proof1 :: proof_tail) (map tl proofs)
-        else case hd proof1 of
-          Have ([], l, t, _) => (* FIXME: should we really ignore the "by"? *)
-          if forall (fn Have ([], l', t', _) :: _ => (l, t) = (l', t')
-                      | _ => false) (tl proofs) andalso
-             not (exists (member (op =) (maps new_labels_of proofs))
-                         (used_labels_of proof_tail)) then
-            SOME (l, t, map rev proofs, proof_tail)
-          else
-            NONE
-        | _ => NONE
-  in aux [] o map rev end
-
-fun case_split_qualifiers proofs =
-  case length proofs of
-    0 => []
-  | 1 => [Then]
-  | _ => [Ultimately]
-
-fun redirect_proof conjecture_shape hyp_ts concl_t proof =
-  let
-    (* The first pass outputs those steps that are independent of the negated
-       conjecture. The second pass flips the proof by contradiction to obtain a
-       direct proof, introducing case splits when an inference depends on
-       several facts that depend on the negated conjecture. *)
-    fun find_hyp num =
-      nth hyp_ts (index_in_shape num conjecture_shape)
-      handle Subscript =>
-             raise Fail ("Cannot find hypothesis " ^ Int.toString num)
-     val concl_ls = map (pair raw_prefix) (List.last conjecture_shape)
-     val canonicalize_labels =
-       map (fn l => if member (op =) concl_ls l then hd concl_ls else l)
-       #> distinct (op =)
-     fun first_pass ([], contra) = ([], contra)
-       | first_pass ((step as Fix _) :: proof, contra) =
-         first_pass (proof, contra) |>> cons step
-       | first_pass ((step as Let _) :: proof, contra) =
-         first_pass (proof, contra) |>> cons step
-       | first_pass ((step as Assume (l as (_, num), _)) :: proof, contra) =
-         if member (op =) concl_ls l then
-           first_pass (proof, contra ||> l = hd concl_ls ? cons step)
-         else
-           first_pass (proof, contra) |>> cons (Assume (l, find_hyp num))
-       | first_pass (Have (qs, l, t, ByMetis (ls, ss)) :: proof, contra) =
-         let
-           val ls = canonicalize_labels ls
-           val step = Have (qs, l, t, ByMetis (ls, ss))
-         in
-           if exists (member (op =) (fst contra)) ls then
-             first_pass (proof, contra |>> cons l ||> cons step)
-           else
-             first_pass (proof, contra) |>> cons step
-         end
-       | first_pass _ = raise Fail "malformed proof"
-    val (proof_top, (contra_ls, contra_proof)) =
-      first_pass (proof, (concl_ls, []))
-    val backpatch_label = the_default ([], []) oo AList.lookup (op =) o fst
-    fun backpatch_labels patches ls =
-      fold merge_fact_sets (map (backpatch_label patches) ls) ([], [])
-    fun second_pass end_qs ([], assums, patches) =
-        ([Have (end_qs, no_label, concl_t,
-                ByMetis (backpatch_labels patches (map snd assums)))], patches)
-      | second_pass end_qs (Assume (l, t) :: proof, assums, patches) =
-        second_pass end_qs (proof, (t, l) :: assums, patches)
-      | second_pass end_qs (Have (qs, l, t, ByMetis (ls, ss)) :: proof, assums,
-                            patches) =
-        if member (op =) (snd (snd patches)) l andalso
-           not (member (op =) (fst (snd patches)) l) andalso
-           not (AList.defined (op =) (fst patches) l) then
-          second_pass end_qs (proof, assums, patches ||> apsnd (append ls))
-        else
-          (case List.partition (member (op =) contra_ls) ls of
-             ([contra_l], co_ls) =>
-             if member (op =) qs Show then
-               second_pass end_qs (proof, assums,
-                                   patches |>> cons (contra_l, (co_ls, ss)))
-             else
-               second_pass end_qs
-                           (proof, assums,
-                            patches |>> cons (contra_l, (l :: co_ls, ss)))
-               |>> cons (if member (op =) (fst (snd patches)) l then
-                           Assume (l, negate_term t)
-                         else
-                           Have (qs, l, negate_term t,
-                                 ByMetis (backpatch_label patches l)))
-           | (contra_ls as _ :: _, co_ls) =>
-             let
-               val proofs =
-                 map_filter
-                     (fn l =>
-                         if member (op =) concl_ls l then
-                           NONE
-                         else
-                           let
-                             val drop_ls = filter (curry (op <>) l) contra_ls
-                           in
-                             second_pass []
-                                 (proof, assums,
-                                  patches ||> apfst (insert (op =) l)
-                                          ||> apsnd (union (op =) drop_ls))
-                             |> fst |> SOME
-                           end) contra_ls
-               val (assumes, facts) =
-                 if member (op =) (fst (snd patches)) l then
-                   ([Assume (l, negate_term t)], (l :: co_ls, ss))
-                 else
-                   ([], (co_ls, ss))
-             in
-               (case join_proofs proofs of
-                  SOME (l, t, proofs, proof_tail) =>
-                  Have (case_split_qualifiers proofs @
-                        (if null proof_tail then end_qs else []), l, t,
-                        smart_case_split proofs facts) :: proof_tail
-                | NONE =>
-                  [Have (case_split_qualifiers proofs @ end_qs, no_label,
-                         concl_t, smart_case_split proofs facts)],
-                patches)
-               |>> append assumes
-             end
-           | _ => raise Fail "malformed proof")
-       | second_pass _ _ = raise Fail "malformed proof"
-    val proof_bottom =
-      second_pass [Show] (contra_proof, [], ([], ([], []))) |> fst
-  in proof_top @ proof_bottom end
-
-(* FIXME: Still needed? Probably not. *)
-val kill_duplicate_assumptions_in_proof =
-  let
-    fun relabel_facts subst =
-      apfst (map (fn l => AList.lookup (op =) subst l |> the_default l))
-    fun do_step (step as Assume (l, t)) (proof, subst, assums) =
-        (case AList.lookup (op aconv) assums t of
-           SOME l' => (proof, (l, l') :: subst, assums)
-         | NONE => (step :: proof, subst, (t, l) :: assums))
-      | do_step (Have (qs, l, t, by)) (proof, subst, assums) =
-        (Have (qs, l, t,
-               case by of
-                 ByMetis facts => ByMetis (relabel_facts subst facts)
-               | CaseSplit (proofs, facts) =>
-                 CaseSplit (map do_proof proofs, relabel_facts subst facts)) ::
-         proof, subst, assums)
-      | do_step step (proof, subst, assums) = (step :: proof, subst, assums)
-    and do_proof proof = fold do_step proof ([], [], []) |> #1 |> rev
-  in do_proof end
-
-val then_chain_proof =
-  let
-    fun aux _ [] = []
-      | aux _ ((step as Assume (l, _)) :: proof) = step :: aux l proof
-      | aux l' (Have (qs, l, t, by) :: proof) =
-        (case by of
-           ByMetis (ls, ss) =>
-           Have (if member (op =) ls l' then
-                   (Then :: qs, l, t,
-                    ByMetis (filter_out (curry (op =) l') ls, ss))
-                 else
-                   (qs, l, t, ByMetis (ls, ss)))
-         | CaseSplit (proofs, facts) =>
-           Have (qs, l, t, CaseSplit (map (aux no_label) proofs, facts))) ::
-        aux l proof
-      | aux _ (step :: proof) = step :: aux no_label proof
-  in aux no_label end
-
-fun kill_useless_labels_in_proof proof =
-  let
-    val used_ls = used_labels_of proof
-    fun do_label l = if member (op =) used_ls l then l else no_label
-    fun do_step (Assume (l, t)) = Assume (do_label l, t)
-      | do_step (Have (qs, l, t, by)) =
-        Have (qs, do_label l, t,
-              case by of
-                CaseSplit (proofs, facts) =>
-                CaseSplit (map (map do_step) proofs, facts)
-              | _ => by)
-      | do_step step = step
-  in map do_step proof end
-
-fun prefix_for_depth n = replicate_string (n + 1)
-
-val relabel_proof =
-  let
-    fun aux _ _ _ [] = []
-      | aux subst depth (next_assum, next_fact) (Assume (l, t) :: proof) =
-        if l = no_label then
-          Assume (l, t) :: aux subst depth (next_assum, next_fact) proof
-        else
-          let val l' = (prefix_for_depth depth assum_prefix, next_assum) in
-            Assume (l', t) ::
-            aux ((l, l') :: subst) depth (next_assum + 1, next_fact) proof
-          end
-      | aux subst depth (next_assum, next_fact) (Have (qs, l, t, by) :: proof) =
-        let
-          val (l', subst, next_fact) =
-            if l = no_label then
-              (l, subst, next_fact)
-            else
-              let
-                val l' = (prefix_for_depth depth fact_prefix, next_fact)
-              in (l', (l, l') :: subst, next_fact + 1) end
-          val relabel_facts =
-            apfst (map (fn l =>
-                           case AList.lookup (op =) subst l of
-                             SOME l' => l'
-                           | NONE => raise Fail ("unknown label " ^
-                                                 quote (string_for_label l))))
-          val by =
-            case by of
-              ByMetis facts => ByMetis (relabel_facts facts)
-            | CaseSplit (proofs, facts) =>
-              CaseSplit (map (aux subst (depth + 1) (1, 1)) proofs,
-                         relabel_facts facts)
-        in
-          Have (qs, l', t, by) ::
-          aux subst depth (next_assum, next_fact) proof
-        end
-      | aux subst depth nextp (step :: proof) =
-        step :: aux subst depth nextp proof
-  in aux [] 0 (1, 1) end
-
-fun string_for_proof ctxt full_types i n =
-  let
-    fun fix_print_mode f x =
-      setmp_CRITICAL show_no_free_types true
-          (setmp_CRITICAL show_types true
-               (Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN)
-                                         (print_mode_value ())) f)) x
-    fun do_indent ind = replicate_string (ind * indent_size) " "
-    fun do_free (s, T) =
-      maybe_quote s ^ " :: " ^
-      maybe_quote (fix_print_mode (Syntax.string_of_typ ctxt) T)
-    fun do_label l = if l = no_label then "" else string_for_label l ^ ": "
-    fun do_have qs =
-      (if member (op =) qs Moreover then "moreover " else "") ^
-      (if member (op =) qs Ultimately then "ultimately " else "") ^
-      (if member (op =) qs Then then
-         if member (op =) qs Show then "thus" else "hence"
-       else
-         if member (op =) qs Show then "show" else "have")
-    val do_term = maybe_quote o fix_print_mode (Syntax.string_of_term ctxt)
-    fun do_facts (ls, ss) =
-      metis_command full_types 1 1
-                    (ls |> sort_distinct (prod_ord string_ord int_ord),
-                     ss |> sort_distinct string_ord)
-    and do_step ind (Fix xs) =
-        do_indent ind ^ "fix " ^ space_implode " and " (map do_free xs) ^ "\n"
-      | do_step ind (Let (t1, t2)) =
-        do_indent ind ^ "let " ^ do_term t1 ^ " = " ^ do_term t2 ^ "\n"
-      | do_step ind (Assume (l, t)) =
-        do_indent ind ^ "assume " ^ do_label l ^ do_term t ^ "\n"
-      | do_step ind (Have (qs, l, t, ByMetis facts)) =
-        do_indent ind ^ do_have qs ^ " " ^
-        do_label l ^ do_term t ^ " " ^ do_facts facts ^ "\n"
-      | do_step ind (Have (qs, l, t, CaseSplit (proofs, facts))) =
-        space_implode (do_indent ind ^ "moreover\n")
-                      (map (do_block ind) proofs) ^
-        do_indent ind ^ do_have qs ^ " " ^ do_label l ^ do_term t ^ " " ^
-        do_facts facts ^ "\n"
-    and do_steps prefix suffix ind steps =
-      let val s = implode (map (do_step ind) steps) in
-        replicate_string (ind * indent_size - size prefix) " " ^ prefix ^
-        String.extract (s, ind * indent_size,
-                        SOME (size s - ind * indent_size - 1)) ^
-        suffix ^ "\n"
-      end
-    and do_block ind proof = do_steps "{ " " }" (ind + 1) proof
-    (* One-step proofs are pointless; better use the Metis one-liner
-       directly. *)
-    and do_proof [Have (_, _, _, ByMetis _)] = ""
-      | do_proof proof =
-        (if i <> 1 then "prefer " ^ string_of_int i ^ "\n" else "") ^
-        do_indent 0 ^ "proof -\n" ^
-        do_steps "" "" 1 proof ^
-        do_indent 0 ^ (if n <> 1 then "next" else "qed")
-  in do_proof end
-
-fun isar_proof_text (pool, debug, isar_shrink_factor, ctxt, conjecture_shape)
-                    (other_params as (full_types, _, atp_proof, axiom_names,
-                                      goal, i)) =
-  let
-    val (params, hyp_ts, concl_t) = strip_subgoal goal i
-    val frees = fold Term.add_frees (concl_t :: hyp_ts) []
-    val tfrees = fold Term.add_tfrees (concl_t :: hyp_ts) []
-    val n = Logic.count_prems (prop_of goal)
-    val (one_line_proof, lemma_names) = metis_proof_text other_params
-    fun isar_proof_for () =
-      case proof_from_atp_proof pool ctxt full_types tfrees isar_shrink_factor
-                                atp_proof conjecture_shape axiom_names params
-                                frees
-           |> redirect_proof conjecture_shape hyp_ts concl_t
-           |> kill_duplicate_assumptions_in_proof
-           |> then_chain_proof
-           |> kill_useless_labels_in_proof
-           |> relabel_proof
-           |> string_for_proof ctxt full_types i n of
-        "" => "\nNo structured proof available."
-      | proof => "\n\nStructured proof:\n" ^ Markup.markup Markup.sendback proof
-    val isar_proof =
-      if debug then
-        isar_proof_for ()
-      else
-        try isar_proof_for ()
-        |> the_default "\nWarning: The Isar proof construction failed."
-  in (one_line_proof ^ isar_proof, lemma_names) end
-
-fun proof_text isar_proof isar_params other_params =
-  (if isar_proof then isar_proof_text isar_params else metis_proof_text)
-      other_params
-
-end;