--- a/src/HOL/Parity.thy Sun Feb 09 10:21:01 2020 +0000
+++ b/src/HOL/Parity.thy Sun Feb 09 10:46:32 2020 +0000
@@ -674,6 +674,7 @@
and mod_exp_eq: \<open>a mod 2 ^ m mod 2 ^ n = a mod 2 ^ min m n\<close>
and mult_exp_mod_exp_eq: \<open>m \<le> n \<Longrightarrow> (a * 2 ^ m) mod (2 ^ n) = (a mod 2 ^ (n - m)) * 2 ^ m\<close>
and div_exp_mod_exp_eq: \<open>a div 2 ^ n mod 2 ^ m = a mod (2 ^ (n + m)) div 2 ^ n\<close>
+ and even_mult_exp_div_exp_iff: \<open>even (a * 2 ^ m div 2 ^ n) \<longleftrightarrow> m > n \<or> 2 ^ n = 0 \<or> (m \<le> n \<and> even (a div 2 ^ (n - m)))\<close>
begin
lemma bits_div_by_0 [simp]:
@@ -958,6 +959,11 @@
show \<open>even ((2 ^ m - (1::nat)) div 2 ^ n) \<longleftrightarrow> 2 ^ n = (0::nat) \<or> m \<le> n\<close>
for m n :: nat
using even_mask_div_iff' [where ?'a = nat, of m n] by simp
+ show \<open>even (q * 2 ^ m div 2 ^ n) \<longleftrightarrow> n < m \<or> (2::nat) ^ n = 0 \<or> m \<le> n \<and> even (q div 2 ^ (n - m))\<close>
+ for m n q r :: nat
+ apply (auto simp add: not_less power_add ac_simps dest!: le_Suc_ex)
+ apply (metis (full_types) dvd_mult dvd_mult_imp_div dvd_power_iff_le not_less not_less_eq order_refl power_Suc)
+ done
qed (auto simp add: div_mult2_eq mod_mult2_eq power_add power_diff)
lemma int_bit_induct [case_names zero minus even odd]:
@@ -1074,6 +1080,11 @@
show \<open>even ((2 ^ m - (1::int)) div 2 ^ n) \<longleftrightarrow> 2 ^ n = (0::int) \<or> m \<le> n\<close>
for m n :: nat
using even_mask_div_iff' [where ?'a = int, of m n] by simp
+ show \<open>even (k * 2 ^ m div 2 ^ n) \<longleftrightarrow> n < m \<or> (2::int) ^ n = 0 \<or> m \<le> n \<and> even (k div 2 ^ (n - m))\<close>
+ for m n :: nat and k l :: int
+ apply (auto simp add: not_less power_add ac_simps dest!: le_Suc_ex)
+ apply (metis Suc_leI dvd_mult dvd_mult_imp_div dvd_power_le dvd_refl power.simps(2))
+ done
qed (auto simp add: zdiv_zmult2_eq zmod_zmult2_eq power_add power_diff not_le)
class semiring_bit_shifts = semiring_bits +
@@ -1250,6 +1261,14 @@
by simp
qed
+lemma even_push_bit_iff [simp]:
+ \<open>even (push_bit n a) \<longleftrightarrow> n \<noteq> 0 \<or> even a\<close>
+ by (simp add: push_bit_eq_mult) auto
+
+lemma bit_push_bit_iff:
+ \<open>bit (push_bit m a) n \<longleftrightarrow> n \<ge> m \<and> 2 ^ n \<noteq> 0 \<and> (n < m \<or> bit a (n - m))\<close>
+ by (auto simp add: bit_def push_bit_eq_mult even_mult_exp_div_exp_iff)
+
lemma bit_drop_bit_eq:
\<open>bit (drop_bit n a) = bit a \<circ> (+) n\<close>
by (simp add: bit_def fun_eq_iff ac_simps flip: drop_bit_eq_div)
@@ -1298,35 +1317,11 @@
lemma bit_push_bit_iff_nat:
\<open>bit (push_bit m q) n \<longleftrightarrow> m \<le> n \<and> bit q (n - m)\<close> for q :: nat
-proof (cases \<open>m \<le> n\<close>)
- case True
- then obtain r where \<open>n = m + r\<close>
- using le_Suc_ex by blast
- with True show ?thesis
- by (simp add: push_bit_eq_mult bit_def power_add mult.commute [of \<open>2 ^ m\<close>])
-next
- case False
- then obtain r where \<open>m = Suc (n + r)\<close>
- using less_imp_Suc_add not_le by blast
- with False show ?thesis
- by (simp add: push_bit_eq_mult bit_def power_add mult.left_commute [of _ \<open>2 ^ n\<close>])
-qed
+ by (auto simp add: bit_push_bit_iff)
lemma bit_push_bit_iff_int:
\<open>bit (push_bit m k) n \<longleftrightarrow> m \<le> n \<and> bit k (n - m)\<close> for k :: int
-proof (cases \<open>m \<le> n\<close>)
- case True
- then obtain r where \<open>n = m + r\<close>
- using le_Suc_ex by blast
- with True show ?thesis
- by (simp add: push_bit_eq_mult bit_def power_add mult.commute [of \<open>2 ^ m\<close>])
-next
- case False
- then obtain r where \<open>m = Suc (n + r)\<close>
- using less_imp_Suc_add not_le by blast
- with False show ?thesis
- by (simp add: push_bit_eq_mult bit_def power_add mult.left_commute [of _ \<open>2 ^ n\<close>])
-qed
+ by (auto simp add: bit_push_bit_iff)
class unique_euclidean_semiring_with_bit_shifts =
unique_euclidean_semiring_with_nat + semiring_bit_shifts
@@ -1421,13 +1416,7 @@
lemma bit_push_bit_iff_of_nat_iff:
\<open>bit (push_bit m (of_nat r)) n \<longleftrightarrow> m \<le> n \<and> bit (of_nat r) (n - m)\<close>
-proof -
- from bit_push_bit_iff_nat
- have \<open>bit (of_nat (push_bit m r)) n \<longleftrightarrow> m \<le> n \<and> bit (of_nat r) (n - m)\<close>
- by simp
- then show ?thesis
- by (simp add: of_nat_push_bit)
-qed
+ by (auto simp add: bit_push_bit_iff)
end
@@ -1463,12 +1452,12 @@
\<open>drop_bit n (- 1 :: int) = - 1\<close>
by (simp add: drop_bit_eq_div minus_1_div_exp_eq_int)
-lemma take_bit_uminus:
+lemma take_bit_minus:
"take_bit n (- (take_bit n k)) = take_bit n (- k)"
for k :: int
by (simp add: take_bit_eq_mod mod_minus_eq)
-lemma take_bit_minus:
+lemma take_bit_diff:
"take_bit n (take_bit n k - take_bit n l) = take_bit n (k - l)"
for k l :: int
by (simp add: take_bit_eq_mod mod_diff_eq)
@@ -1478,4 +1467,9 @@
for k :: int
by (simp add: take_bit_eq_mod)
+lemma drop_bit_push_bit_int:
+ \<open>drop_bit m (push_bit n k) = drop_bit (m - n) (push_bit (n - m) k)\<close> for k :: int
+ by (cases \<open>m \<le> n\<close>) (auto simp add: mult.left_commute [of _ \<open>2 ^ n\<close>] mult.commute [of _ \<open>2 ^ n\<close>] mult.assoc
+ mult.commute [of k] drop_bit_eq_div push_bit_eq_mult not_le power_add dest!: le_Suc_ex less_imp_Suc_add)
+
end