--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/GroupTheory/DirProd.thy Tue Jul 03 15:28:24 2001 +0200
@@ -0,0 +1,47 @@
+(* Title: HOL/GroupTheory/DirProd
+ ID: $Id$
+ Author: Florian Kammueller, with new proofs by L C Paulson
+ Copyright 1998-2001 University of Cambridge
+
+Direct product of two groups
+*)
+
+DirProd = Coset +
+
+consts
+ ProdGroup :: "(['a grouptype, 'b grouptype] => ('a * 'b) grouptype)"
+
+defs
+ ProdGroup_def "ProdGroup == lam G: Group. lam G': Group.
+ (| carrier = ((G.<cr>) \\<times> (G'.<cr>)),
+ bin_op = (lam (x, x'): ((G.<cr>) \\<times> (G'.<cr>)).
+ lam (y, y'): ((G.<cr>) \\<times> (G'.<cr>)).
+ ((G.<f>) x y,(G'.<f>) x' y')),
+ inverse = (lam (x, y): ((G.<cr>) \\<times> (G'.<cr>)). ((G.<inv>) x, (G'.<inv>) y)),
+ unit = ((G.<e>),(G'.<e>)) |)"
+
+syntax
+ "@Pro" :: "['a grouptype, 'b grouptype] => ('a * 'b) grouptype" ("<|_,_|>" [60,61]60)
+
+translations
+ "<| G , G' |>" == "ProdGroup G G'"
+
+locale r_group = group +
+ fixes
+ G' :: "'b grouptype"
+ e' :: "'b"
+ binop' :: "'b => 'b => 'b" ("(_ ##' _)" [80,81]80 )
+ INV' :: "'b => 'b" ("i' (_)" [90]91)
+ assumes
+ Group_G' "G' : Group"
+ defines
+ e'_def "e' == unit G'"
+ binop'_def "x ##' y == bin_op G' x y"
+ inv'_def "i'(x) == inverse G' x"
+
+locale prodgroup = r_group +
+ fixes
+ P :: "('a * 'b) grouptype"
+ defines
+ P_def "P == <| G, G' |>"
+end