--- a/src/HOL/Cardinals/Wellorder_Constructions.thy Wed Mar 05 18:28:57 2025 +0100
+++ b/src/HOL/Cardinals/Wellorder_Constructions.thy Tue Mar 11 10:20:44 2025 +0100
@@ -96,7 +96,8 @@
lemma ofilter_ordLeq:
assumes "Well_order r" and "ofilter r A"
shows "Restr r A \<le>o r"
-by (metis assms inf.orderE ofilter_embed ofilter_subset_ordLeq refl_on_def wo_rel.Field_ofilter wo_rel.REFL wo_rel.intro)
+ by (metis Well_order_Restr[of r A] assms ofilter_embed[of r A] ordLess_iff[of r "Restr r A"]
+ ordLess_or_ordLeq[of r "Restr r A"])
corollary under_Restr_ordLeq:
"Well_order r \<Longrightarrow> Restr r (under r a) \<le>o r"
@@ -334,7 +335,7 @@
have bb: "b \<in> Field r" using bA unfolding underS_def Field_def by auto
assume "\<forall>a\<in>A. b \<notin> underS a"
hence 0: "\<forall>a \<in> A. (a,b) \<in> r" using A bA unfolding underS_def
- by simp (metis REFL in_mono max2_def max2_greater refl_on_domain)
+ using bb in_notinI[of b] by blast
have "(supr A, b) \<in> r"
by (simp add: "0" A bb supr_least)
thus False
@@ -605,7 +606,7 @@
assumes isLimOrd and "i \<in> Field r"
shows "succ i \<in> Field r"
using assms unfolding isLimOrd_def isSuccOrd_def
- by (metis REFL in_notinI refl_on_domain succ_smallest)
+ using FieldI1[of "succ i" _ r] in_notinI[of i] succ_smallest[of i] by blast
lemma isLimOrd_aboveS:
assumes l: isLimOrd and i: "i \<in> Field r"