--- a/src/HOL/Complex/NSComplexBin.ML Sat Feb 14 02:06:12 2004 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,595 +0,0 @@
-(* Title: NSComplexBin.ML
- Author: Jacques D. Fleuriot
- Copyright: 2001 University of Edinburgh
- Descrition: Binary arithmetic for the nonstandard complex numbers
-*)
-
-(** hcomplex_of_complex (coercion from complex to nonstandard complex) **)
-
-Goal "hcomplex_of_complex (number_of w) = number_of w";
-by (simp_tac (simpset() addsimps [hcomplex_number_of_def]) 1);
-qed "hcomplex_number_of";
-Addsimps [hcomplex_number_of];
-
-Goalw [hypreal_of_real_def]
- "hcomplex_of_hypreal (hypreal_of_real x) = \
-\ hcomplex_of_complex(complex_of_real x)";
-by (simp_tac (simpset() addsimps [hcomplex_of_hypreal,
- hcomplex_of_complex_def,complex_of_real_def]) 1);
-qed "hcomplex_of_hypreal_eq_hcomplex_of_complex";
-
-Goalw [complex_number_of_def,hypreal_number_of_def]
- "hcomplex_of_complex (number_of w) = hcomplex_of_hypreal(number_of w)";
-by (rtac (hcomplex_of_hypreal_eq_hcomplex_of_complex RS sym) 1);
-qed "hcomplex_hypreal_number_of";
-
-Goalw [hcomplex_number_of_def] "Numeral0 = (0::hcomplex)";
-by(Simp_tac 1);
-qed "hcomplex_numeral_0_eq_0";
-
-Goalw [hcomplex_number_of_def] "Numeral1 = (1::hcomplex)";
-by(Simp_tac 1);
-qed "hcomplex_numeral_1_eq_1";
-
-(*
-Goal "z + hcnj z = \
-\ hcomplex_of_hypreal (2 * hRe(z))";
-by (res_inst_tac [("z","z")] eq_Abs_hcomplex 1);
-by (auto_tac (claset(),HOL_ss addsimps [hRe,hcnj,hcomplex_add,
- hypreal_mult,hcomplex_of_hypreal,complex_add_cnj]));
-qed "hcomplex_add_hcnj";
-
-Goal "z - hcnj z = \
-\ hcomplex_of_hypreal (hypreal_of_real #2 * hIm(z)) * iii";
-by (res_inst_tac [("z","z")] eq_Abs_hcomplex 1);
-by (auto_tac (claset(),simpset() addsimps [hIm,hcnj,hcomplex_diff,
- hypreal_of_real_def,hypreal_mult,hcomplex_of_hypreal,
- complex_diff_cnj,iii_def,hcomplex_mult]));
-qed "hcomplex_diff_hcnj";
-*)
-
-(** Addition **)
-
-Goal "(number_of v :: hcomplex) + number_of v' = number_of (bin_add v v')";
-by (simp_tac
- (HOL_ss addsimps [hcomplex_number_of_def,
- hcomplex_of_complex_add RS sym, add_complex_number_of]) 1);
-qed "add_hcomplex_number_of";
-Addsimps [add_hcomplex_number_of];
-
-
-(** Subtraction **)
-
-Goalw [hcomplex_number_of_def]
- "- (number_of w :: hcomplex) = number_of (bin_minus w)";
-by (simp_tac
- (HOL_ss addsimps [minus_complex_number_of, hcomplex_of_complex_minus RS sym]) 1);
-qed "minus_hcomplex_number_of";
-Addsimps [minus_hcomplex_number_of];
-
-Goalw [hcomplex_number_of_def, hcomplex_diff_def]
- "(number_of v :: hcomplex) - number_of w = \
-\ number_of (bin_add v (bin_minus w))";
-by (Simp_tac 1);
-qed "diff_hcomplex_number_of";
-Addsimps [diff_hcomplex_number_of];
-
-
-(** Multiplication **)
-
-Goal "(number_of v :: hcomplex) * number_of v' = number_of (bin_mult v v')";
-by (simp_tac
- (HOL_ss addsimps [hcomplex_number_of_def,
- hcomplex_of_complex_mult RS sym, mult_complex_number_of]) 1);
-qed "mult_hcomplex_number_of";
-Addsimps [mult_hcomplex_number_of];
-
-Goal "(2::hcomplex) = 1 + 1";
-by (simp_tac (simpset() addsimps [hcomplex_numeral_1_eq_1 RS sym]) 1);
-val lemma = result();
-
-(*For specialist use: NOT as default simprules*)
-Goal "2 * z = (z+z::hcomplex)";
-by (simp_tac (simpset() addsimps [lemma, hcomplex_add_mult_distrib]) 1);
-qed "hcomplex_mult_2";
-
-Goal "z * 2 = (z+z::hcomplex)";
-by (stac hcomplex_mult_commute 1 THEN rtac hcomplex_mult_2 1);
-qed "hcomplex_mult_2_right";
-
-(** Equals (=) **)
-
-Goal "((number_of v :: hcomplex) = number_of v') = \
-\ iszero (number_of (bin_add v (bin_minus v')) :: int)";
-by (simp_tac
- (HOL_ss addsimps [hcomplex_number_of_def,
- hcomplex_of_complex_eq_iff, eq_complex_number_of]) 1);
-qed "eq_hcomplex_number_of";
-Addsimps [eq_hcomplex_number_of];
-
-(*** New versions of existing theorems involving 0, 1hc ***)
-
-Goal "- 1 = (-1::hcomplex)";
-by (simp_tac (simpset() addsimps [hcomplex_numeral_1_eq_1 RS sym]) 1);
-qed "hcomplex_minus_1_eq_m1";
-
-Goal "-1 * z = -(z::hcomplex)";
-by (simp_tac (simpset() addsimps [hcomplex_minus_1_eq_m1 RS sym]) 1);
-qed "hcomplex_mult_minus1";
-
-Goal "z * -1 = -(z::hcomplex)";
-by (stac hcomplex_mult_commute 1 THEN rtac hcomplex_mult_minus1 1);
-qed "hcomplex_mult_minus1_right";
-
-Addsimps [hcomplex_mult_minus1,hcomplex_mult_minus1_right];
-
-(*Maps 0 to Numeral0 and 1 to Numeral1 and -Numeral1 to -1*)
-val hcomplex_numeral_ss =
- complex_numeral_ss addsimps [hcomplex_numeral_0_eq_0 RS sym, hcomplex_numeral_1_eq_1 RS sym,
- hcomplex_minus_1_eq_m1];
-
-fun rename_numerals th =
- asm_full_simplify hcomplex_numeral_ss (Thm.transfer (the_context ()) th);
-
-
-(*Now insert some identities previously stated for 0 and 1hc*)
-
-
-Addsimps [hcomplex_numeral_0_eq_0,hcomplex_numeral_1_eq_1];
-
-Goal "number_of v + (number_of w + z) = (number_of(bin_add v w) + z::hcomplex)";
-by (auto_tac (claset(),simpset() addsimps [hcomplex_add_assoc RS sym]));
-qed "hcomplex_add_number_of_left";
-
-Goal "number_of v *(number_of w * z) = (number_of(bin_mult v w) * z::hcomplex)";
-by (simp_tac (simpset() addsimps [hcomplex_mult_assoc RS sym]) 1);
-qed "hcomplex_mult_number_of_left";
-
-Goalw [hcomplex_diff_def]
- "number_of v + (number_of w - c) = number_of(bin_add v w) - (c::hcomplex)";
-by (rtac hcomplex_add_number_of_left 1);
-qed "hcomplex_add_number_of_diff1";
-
-Goal "number_of v + (c - number_of w) = \
-\ number_of (bin_add v (bin_minus w)) + (c::hcomplex)";
-by (auto_tac (claset(),simpset() addsimps [hcomplex_diff_def]@ add_ac));
-qed "hcomplex_add_number_of_diff2";
-
-Addsimps [hcomplex_add_number_of_left, hcomplex_mult_number_of_left,
- hcomplex_add_number_of_diff1, hcomplex_add_number_of_diff2];
-
-
-(**** Simprocs for numeric literals ****)
-
-structure HComplex_Numeral_Simprocs =
-struct
-
-(*Utilities*)
-
-val hcomplexT = Type("NSComplex.hcomplex",[]);
-
-fun mk_numeral n = HOLogic.number_of_const hcomplexT $ HOLogic.mk_bin n;
-
-val dest_numeral = Complex_Numeral_Simprocs.dest_numeral;
-
-val find_first_numeral = Complex_Numeral_Simprocs.find_first_numeral;
-
-val zero = mk_numeral 0;
-val mk_plus = HOLogic.mk_binop "op +";
-
-val uminus_const = Const ("uminus", hcomplexT --> hcomplexT);
-
-(*Thus mk_sum[t] yields t+0; longer sums don't have a trailing zero*)
-fun mk_sum [] = zero
- | mk_sum [t,u] = mk_plus (t, u)
- | mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
-
-(*this version ALWAYS includes a trailing zero*)
-fun long_mk_sum [] = zero
- | long_mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
-
-val dest_plus = HOLogic.dest_bin "op +" hcomplexT;
-
-(*decompose additions AND subtractions as a sum*)
-fun dest_summing (pos, Const ("op +", _) $ t $ u, ts) =
- dest_summing (pos, t, dest_summing (pos, u, ts))
- | dest_summing (pos, Const ("op -", _) $ t $ u, ts) =
- dest_summing (pos, t, dest_summing (not pos, u, ts))
- | dest_summing (pos, t, ts) =
- if pos then t::ts else uminus_const$t :: ts;
-
-fun dest_sum t = dest_summing (true, t, []);
-
-val mk_diff = HOLogic.mk_binop "op -";
-val dest_diff = HOLogic.dest_bin "op -" hcomplexT;
-
-val one = mk_numeral 1;
-val mk_times = HOLogic.mk_binop "op *";
-
-fun mk_prod [] = one
- | mk_prod [t] = t
- | mk_prod (t :: ts) = if t = one then mk_prod ts
- else mk_times (t, mk_prod ts);
-
-val dest_times = HOLogic.dest_bin "op *" hcomplexT;
-
-fun dest_prod t =
- let val (t,u) = dest_times t
- in dest_prod t @ dest_prod u end
- handle TERM _ => [t];
-
-(*DON'T do the obvious simplifications; that would create special cases*)
-fun mk_coeff (k, ts) = mk_times (mk_numeral k, ts);
-
-(*Express t as a product of (possibly) a numeral with other sorted terms*)
-fun dest_coeff sign (Const ("uminus", _) $ t) = dest_coeff (~sign) t
- | dest_coeff sign t =
- let val ts = sort Term.term_ord (dest_prod t)
- val (n, ts') = find_first_numeral [] ts
- handle TERM _ => (1, ts)
- in (sign*n, mk_prod ts') end;
-
-(*Find first coefficient-term THAT MATCHES u*)
-fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
- | find_first_coeff past u (t::terms) =
- let val (n,u') = dest_coeff 1 t
- in if u aconv u' then (n, rev past @ terms)
- else find_first_coeff (t::past) u terms
- end
- handle TERM _ => find_first_coeff (t::past) u terms;
-
-
-
-(*Simplify Numeral0+n, n+Numeral0, Numeral1*n, n*Numeral1*)
-val add_0s = map rename_numerals [hcomplex_add_zero_left, hcomplex_add_zero_right];
-val mult_plus_1s = map rename_numerals [hcomplex_mult_one_left, hcomplex_mult_one_right];
-val mult_minus_1s = map rename_numerals [hcomplex_mult_minus1, hcomplex_mult_minus1_right];
-val mult_1s = mult_plus_1s @ mult_minus_1s;
-
-(*To perform binary arithmetic*)
-val bin_simps =
- [hcomplex_numeral_0_eq_0 RS sym, hcomplex_numeral_1_eq_1 RS sym,
- add_hcomplex_number_of, hcomplex_add_number_of_left,
- minus_hcomplex_number_of, diff_hcomplex_number_of, mult_hcomplex_number_of,
- hcomplex_mult_number_of_left] @ bin_arith_simps @ bin_rel_simps;
-
-(*Binary arithmetic BUT NOT ADDITION since it may collapse adjacent terms
- during re-arrangement*)
-val non_add_bin_simps =
- bin_simps \\ [hcomplex_add_number_of_left, add_hcomplex_number_of];
-
-(*To evaluate binary negations of coefficients*)
-val hcomplex_minus_simps = NCons_simps @
- [hcomplex_minus_1_eq_m1,minus_hcomplex_number_of,
- bin_minus_1, bin_minus_0, bin_minus_Pls, bin_minus_Min,
- bin_pred_1, bin_pred_0, bin_pred_Pls, bin_pred_Min];
-
-
-(*To let us treat subtraction as addition*)
-val diff_simps = [hcomplex_diff_def, minus_add_distrib, minus_minus];
-
-(*push the unary minus down: - x * y = x * - y *)
-val hcomplex_minus_mult_eq_1_to_2 =
- [minus_mult_left RS sym, minus_mult_right] MRS trans
- |> standard;
-
-(*to extract again any uncancelled minuses*)
-val hcomplex_minus_from_mult_simps =
- [minus_minus, minus_mult_left RS sym, minus_mult_right RS sym];
-
-(*combine unary minus with numeric literals, however nested within a product*)
-val hcomplex_mult_minus_simps =
- [hcomplex_mult_assoc, minus_mult_left, hcomplex_minus_mult_eq_1_to_2];
-
-(*Final simplification: cancel + and * *)
-val simplify_meta_eq =
- Int_Numeral_Simprocs.simplify_meta_eq
- [add_zero_left, add_zero_right,
- mult_zero_left, mult_zero_right, mult_1, mult_1_right];
-
-val prep_simproc = Complex_Numeral_Simprocs.prep_simproc;
-
-
-structure CancelNumeralsCommon =
- struct
- val mk_sum = mk_sum
- val dest_sum = dest_sum
- val mk_coeff = mk_coeff
- val dest_coeff = dest_coeff 1
- val find_first_coeff = find_first_coeff []
- val trans_tac = Real_Numeral_Simprocs.trans_tac
- val norm_tac =
- ALLGOALS (simp_tac (HOL_ss addsimps add_0s@mult_1s@diff_simps@
- hcomplex_minus_simps@add_ac))
- THEN ALLGOALS (simp_tac (HOL_ss addsimps non_add_bin_simps@hcomplex_mult_minus_simps))
- THEN ALLGOALS
- (simp_tac (HOL_ss addsimps hcomplex_minus_from_mult_simps@
- add_ac@mult_ac))
- val numeral_simp_tac = ALLGOALS (simp_tac (HOL_ss addsimps add_0s@bin_simps))
- val simplify_meta_eq = simplify_meta_eq
- end;
-
-
-structure EqCancelNumerals = CancelNumeralsFun
- (open CancelNumeralsCommon
- val prove_conv = Bin_Simprocs.prove_conv
- val mk_bal = HOLogic.mk_eq
- val dest_bal = HOLogic.dest_bin "op =" hcomplexT
- val bal_add1 = eq_add_iff1 RS trans
- val bal_add2 = eq_add_iff2 RS trans
-);
-
-
-val cancel_numerals =
- map prep_simproc
- [("hcomplexeq_cancel_numerals",
- ["(l::hcomplex) + m = n", "(l::hcomplex) = m + n",
- "(l::hcomplex) - m = n", "(l::hcomplex) = m - n",
- "(l::hcomplex) * m = n", "(l::hcomplex) = m * n"],
- EqCancelNumerals.proc)];
-
-structure CombineNumeralsData =
- struct
- val add = op + : int*int -> int
- val mk_sum = long_mk_sum (*to work for e.g. #2*x + #3*x *)
- val dest_sum = dest_sum
- val mk_coeff = mk_coeff
- val dest_coeff = dest_coeff 1
- val left_distrib = combine_common_factor RS trans
- val prove_conv = Bin_Simprocs.prove_conv_nohyps
- val trans_tac = Real_Numeral_Simprocs.trans_tac
- val norm_tac =
- ALLGOALS (simp_tac (HOL_ss addsimps add_0s@mult_1s@diff_simps@
- hcomplex_minus_simps@add_ac))
- THEN ALLGOALS (simp_tac (HOL_ss addsimps non_add_bin_simps@hcomplex_mult_minus_simps))
- THEN ALLGOALS (simp_tac (HOL_ss addsimps hcomplex_minus_from_mult_simps@
- add_ac@mult_ac))
- val numeral_simp_tac = ALLGOALS
- (simp_tac (HOL_ss addsimps add_0s@bin_simps))
- val simplify_meta_eq = simplify_meta_eq
- end;
-
-structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData);
-
-val combine_numerals =
- prep_simproc ("hcomplex_combine_numerals",
- ["(i::hcomplex) + j", "(i::hcomplex) - j"],
- CombineNumerals.proc);
-
-(** Declarations for ExtractCommonTerm **)
-
-(*this version ALWAYS includes a trailing one*)
-fun long_mk_prod [] = one
- | long_mk_prod (t :: ts) = mk_times (t, mk_prod ts);
-
-(*Find first term that matches u*)
-fun find_first past u [] = raise TERM("find_first", [])
- | find_first past u (t::terms) =
- if u aconv t then (rev past @ terms)
- else find_first (t::past) u terms
- handle TERM _ => find_first (t::past) u terms;
-
-(*Final simplification: cancel + and * *)
-fun cancel_simplify_meta_eq cancel_th th =
- Int_Numeral_Simprocs.simplify_meta_eq
- [hcomplex_mult_one_left, hcomplex_mult_one_right]
- (([th, cancel_th]) MRS trans);
-
-(*** Making constant folding work for 0 and 1 too ***)
-
-structure HComplexAbstractNumeralsData =
- struct
- val dest_eq = HOLogic.dest_eq o HOLogic.dest_Trueprop o concl_of
- val is_numeral = Bin_Simprocs.is_numeral
- val numeral_0_eq_0 = hcomplex_numeral_0_eq_0
- val numeral_1_eq_1 = hcomplex_numeral_1_eq_1
- val prove_conv = Bin_Simprocs.prove_conv_nohyps_novars
- fun norm_tac simps = ALLGOALS (simp_tac (HOL_ss addsimps simps))
- val simplify_meta_eq = Bin_Simprocs.simplify_meta_eq
- end
-
-structure HComplexAbstractNumerals = AbstractNumeralsFun (HComplexAbstractNumeralsData)
-
-(*For addition, we already have rules for the operand 0.
- Multiplication is omitted because there are already special rules for
- both 0 and 1 as operands. Unary minus is trivial, just have - 1 = -1.
- For the others, having three patterns is a compromise between just having
- one (many spurious calls) and having nine (just too many!) *)
-val eval_numerals =
- map prep_simproc
- [("hcomplex_add_eval_numerals",
- ["(m::hcomplex) + 1", "(m::hcomplex) + number_of v"],
- HComplexAbstractNumerals.proc add_hcomplex_number_of),
- ("hcomplex_diff_eval_numerals",
- ["(m::hcomplex) - 1", "(m::hcomplex) - number_of v"],
- HComplexAbstractNumerals.proc diff_hcomplex_number_of),
- ("hcomplex_eq_eval_numerals",
- ["(m::hcomplex) = 0", "(m::hcomplex) = 1", "(m::hcomplex) = number_of v"],
- HComplexAbstractNumerals.proc eq_hcomplex_number_of)]
-
-end;
-
-Addsimprocs HComplex_Numeral_Simprocs.eval_numerals;
-Addsimprocs HComplex_Numeral_Simprocs.cancel_numerals;
-Addsimprocs [HComplex_Numeral_Simprocs.combine_numerals];
-
-
-(*examples:
-print_depth 22;
-set timing;
-set trace_simp;
-fun test s = (Goal s, by (Simp_tac 1));
-
-test "l + 2 + 2 + 2 + (l + 2) + (oo + 2) = (uu::hcomplex)";
-test " 2*u = (u::hcomplex)";
-test "(i + j + 12 + (k::hcomplex)) - 15 = y";
-test "(i + j + 12 + (k::hcomplex)) - 5 = y";
-
-test "( 2*x - (u*v) + y) - v* 3*u = (w::hcomplex)";
-test "( 2*x*u*v + (u*v)* 4 + y) - v*u* 4 = (w::hcomplex)";
-test "( 2*x*u*v + (u*v)* 4 + y) - v*u = (w::hcomplex)";
-test "u*v - (x*u*v + (u*v)* 4 + y) = (w::hcomplex)";
-
-test "(i + j + 12 + (k::hcomplex)) = u + 15 + y";
-test "(i + j* 2 + 12 + (k::hcomplex)) = j + 5 + y";
-
-test " 2*y + 3*z + 6*w + 2*y + 3*z + 2*u = 2*y' + 3*z' + 6*w' + 2*y' + 3*z' + u + (vv::hcomplex)";
-
-test "a + -(b+c) + b = (d::hcomplex)";
-test "a + -(b+c) - b = (d::hcomplex)";
-
-(*negative numerals*)
-test "(i + j + -2 + (k::hcomplex)) - (u + 5 + y) = zz";
-
-test "(i + j + -12 + (k::hcomplex)) - 15 = y";
-test "(i + j + 12 + (k::hcomplex)) - -15 = y";
-test "(i + j + -12 + (k::hcomplex)) - -15 = y";
-*)
-
-(** Constant folding for hcomplex plus and times **)
-
-structure HComplex_Times_Assoc_Data : ASSOC_FOLD_DATA =
-struct
- val ss = HOL_ss
- val eq_reflection = eq_reflection
- val sg_ref = Sign.self_ref (Theory.sign_of (the_context ()))
- val T = HComplex_Numeral_Simprocs.hcomplexT
- val plus = Const ("op *", [T,T] ---> T)
- val add_ac = mult_ac
-end;
-
-structure HComplex_Times_Assoc = Assoc_Fold (HComplex_Times_Assoc_Data);
-
-Addsimprocs [HComplex_Times_Assoc.conv];
-
-Addsimps [hcomplex_of_complex_zero_iff];
-
-
-(** extra thms **)
-
-Goal "(hcnj z = 0) = (z = 0)";
-by (auto_tac (claset(),simpset() addsimps [hcomplex_hcnj_zero_iff]));
-qed "hcomplex_hcnj_num_zero_iff";
-Addsimps [hcomplex_hcnj_num_zero_iff];
-
-Goal "0 = Abs_hcomplex (hcomplexrel `` {%n. 0})";
-by (simp_tac (simpset() addsimps [hcomplex_zero_def RS meta_eq_to_obj_eq RS sym]) 1);
-qed "hcomplex_zero_num";
-
-Goal "1 = Abs_hcomplex (hcomplexrel `` {%n. 1})";
-by (simp_tac (simpset() addsimps [hcomplex_one_def RS meta_eq_to_obj_eq RS sym]) 1);
-qed "hcomplex_one_num";
-
-(*** Real and imaginary stuff ***)
-
-(*Convert???
-Goalw [hcomplex_number_of_def]
- "((number_of xa :: hcomplex) + iii * number_of ya = \
-\ number_of xb + iii * number_of yb) = \
-\ (((number_of xa :: hcomplex) = number_of xb) & \
-\ ((number_of ya :: hcomplex) = number_of yb))";
-by (auto_tac (claset(), HOL_ss addsimps [hcomplex_eq_cancel_iff,
- hcomplex_hypreal_number_of]));
-qed "hcomplex_number_of_eq_cancel_iff";
-Addsimps [hcomplex_number_of_eq_cancel_iff];
-
-Goalw [hcomplex_number_of_def]
- "((number_of xa :: hcomplex) + number_of ya * iii = \
-\ number_of xb + number_of yb * iii) = \
-\ (((number_of xa :: hcomplex) = number_of xb) & \
-\ ((number_of ya :: hcomplex) = number_of yb))";
-by (auto_tac (claset(), HOL_ss addsimps [hcomplex_eq_cancel_iffA,
- hcomplex_hypreal_number_of]));
-qed "hcomplex_number_of_eq_cancel_iffA";
-Addsimps [hcomplex_number_of_eq_cancel_iffA];
-
-Goalw [hcomplex_number_of_def]
- "((number_of xa :: hcomplex) + number_of ya * iii = \
-\ number_of xb + iii * number_of yb) = \
-\ (((number_of xa :: hcomplex) = number_of xb) & \
-\ ((number_of ya :: hcomplex) = number_of yb))";
-by (auto_tac (claset(), HOL_ss addsimps [hcomplex_eq_cancel_iffB,
- hcomplex_hypreal_number_of]));
-qed "hcomplex_number_of_eq_cancel_iffB";
-Addsimps [hcomplex_number_of_eq_cancel_iffB];
-
-Goalw [hcomplex_number_of_def]
- "((number_of xa :: hcomplex) + iii * number_of ya = \
-\ number_of xb + number_of yb * iii) = \
-\ (((number_of xa :: hcomplex) = number_of xb) & \
-\ ((number_of ya :: hcomplex) = number_of yb))";
-by (auto_tac (claset(), HOL_ss addsimps [hcomplex_eq_cancel_iffC,
- hcomplex_hypreal_number_of]));
-qed "hcomplex_number_of_eq_cancel_iffC";
-Addsimps [hcomplex_number_of_eq_cancel_iffC];
-
-Goalw [hcomplex_number_of_def]
- "((number_of xa :: hcomplex) + iii * number_of ya = \
-\ number_of xb) = \
-\ (((number_of xa :: hcomplex) = number_of xb) & \
-\ ((number_of ya :: hcomplex) = 0))";
-by (auto_tac (claset(), HOL_ss addsimps [hcomplex_eq_cancel_iff2,
- hcomplex_hypreal_number_of,hcomplex_of_hypreal_zero_iff]));
-qed "hcomplex_number_of_eq_cancel_iff2";
-Addsimps [hcomplex_number_of_eq_cancel_iff2];
-
-Goalw [hcomplex_number_of_def]
- "((number_of xa :: hcomplex) + number_of ya * iii = \
-\ number_of xb) = \
-\ (((number_of xa :: hcomplex) = number_of xb) & \
-\ ((number_of ya :: hcomplex) = 0))";
-by (auto_tac (claset(), HOL_ss addsimps [hcomplex_eq_cancel_iff2a,
- hcomplex_hypreal_number_of,hcomplex_of_hypreal_zero_iff]));
-qed "hcomplex_number_of_eq_cancel_iff2a";
-Addsimps [hcomplex_number_of_eq_cancel_iff2a];
-
-Goalw [hcomplex_number_of_def]
- "((number_of xa :: hcomplex) + iii * number_of ya = \
-\ iii * number_of yb) = \
-\ (((number_of xa :: hcomplex) = 0) & \
-\ ((number_of ya :: hcomplex) = number_of yb))";
-by (auto_tac (claset(), HOL_ss addsimps [hcomplex_eq_cancel_iff3,
- hcomplex_hypreal_number_of,hcomplex_of_hypreal_zero_iff]));
-qed "hcomplex_number_of_eq_cancel_iff3";
-Addsimps [hcomplex_number_of_eq_cancel_iff3];
-
-Goalw [hcomplex_number_of_def]
- "((number_of xa :: hcomplex) + number_of ya * iii= \
-\ iii * number_of yb) = \
-\ (((number_of xa :: hcomplex) = 0) & \
-\ ((number_of ya :: hcomplex) = number_of yb))";
-by (auto_tac (claset(), HOL_ss addsimps [hcomplex_eq_cancel_iff3a,
- hcomplex_hypreal_number_of,hcomplex_of_hypreal_zero_iff]));
-qed "hcomplex_number_of_eq_cancel_iff3a";
-Addsimps [hcomplex_number_of_eq_cancel_iff3a];
-*)
-
-Goalw [hcomplex_number_of_def] "hcnj (number_of v :: hcomplex) = number_of v";
-by (rtac (hcomplex_hypreal_number_of RS ssubst) 1);
-by (rtac hcomplex_hcnj_hcomplex_of_hypreal 1);
-qed "hcomplex_number_of_hcnj";
-Addsimps [hcomplex_number_of_hcnj];
-
-Goalw [hcomplex_number_of_def]
- "hcmod(number_of v :: hcomplex) = abs (number_of v :: hypreal)";
-by (rtac (hcomplex_hypreal_number_of RS ssubst) 1);
-by (auto_tac (claset(), HOL_ss addsimps [hcmod_hcomplex_of_hypreal]));
-qed "hcomplex_number_of_hcmod";
-Addsimps [hcomplex_number_of_hcmod];
-
-Goalw [hcomplex_number_of_def]
- "hRe(number_of v :: hcomplex) = number_of v";
-by (rtac (hcomplex_hypreal_number_of RS ssubst) 1);
-by (auto_tac (claset(), HOL_ss addsimps [hRe_hcomplex_of_hypreal]));
-qed "hcomplex_number_of_hRe";
-Addsimps [hcomplex_number_of_hRe];
-
-Goalw [hcomplex_number_of_def]
- "hIm(number_of v :: hcomplex) = 0";
-by (rtac (hcomplex_hypreal_number_of RS ssubst) 1);
-by (auto_tac (claset(), HOL_ss addsimps [hIm_hcomplex_of_hypreal]));
-qed "hcomplex_number_of_hIm";
-Addsimps [hcomplex_number_of_hIm];
-
-
-