--- a/src/HOL/Library/FSet.thy Sat May 24 09:06:26 2025 +0200
+++ b/src/HOL/Library/FSet.thy Wed May 28 17:49:22 2025 +0200
@@ -256,7 +256,7 @@
by transfer_prover
lift_definition ffilter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'a fset" is Set.filter
- parametric Lifting_Set.filter_transfer unfolding Set.filter_def by simp
+ parametric Lifting_Set.filter_transfer by simp
lift_definition fPow :: "'a fset \<Rightarrow> 'a fset fset" is Pow parametric Pow_transfer
by (simp add: finite_subset)
@@ -1015,7 +1015,7 @@
by (rule bind_const[Transfer.transferred])
lemma ffmember_filter[simp]: "(x |\<in>| ffilter P A) = (x |\<in>| A \<and> P x)"
- by (rule member_filter[Transfer.transferred])
+ by transfer simp
lemma fequalityI: "A |\<subseteq>| B \<Longrightarrow> B |\<subseteq>| A \<Longrightarrow> A = B"
by (rule equalityI[Transfer.transferred])
@@ -1112,7 +1112,7 @@
lemma fset_of_list_filter[simp]:
"fset_of_list (filter P xs) = ffilter P (fset_of_list xs)"
- by transfer (auto simp: Set.filter_def)
+ by transfer auto
lemma fset_of_list_subset[intro]:
"set xs \<subseteq> set ys \<Longrightarrow> fset_of_list xs |\<subseteq>| fset_of_list ys"