src/HOL/Number_Theory/Pocklington.thy
changeset 82664 e9f3b94eb6a0
parent 78668 d52934f126d4
child 82690 cccbfa567117
--- a/src/HOL/Number_Theory/Pocklington.thy	Sat May 24 09:06:26 2025 +0200
+++ b/src/HOL/Number_Theory/Pocklington.thy	Wed May 28 17:49:22 2025 +0200
@@ -516,7 +516,8 @@
   hence "Min A \<le> k" by (intro Min_le) (auto simp: \<open>finite A\<close>)
   moreover from * have "k \<le> Min A"
     unfolding k_def by (intro Least_le) (auto simp: A_def)
-  ultimately show ?thesis using True by (simp add: ord_def k_def A_def Set.filter_def)
+  ultimately show ?thesis using True
+    by (simp add: ord_def k_def A_def)
 qed auto
 
 theorem ord_modulus_mult_coprime: